Project description:Microbial reductive dechlorination of trichloroethene (TCE) in groundwater often results in the accumulation of dichloroethenes (DCEs). Dehalococcoides mccartyi (Dhc) are the only known bacteria capable of dechlorination beyond DCE to non-toxic ethene. In this study, two newly isolated Dhc strains (11a and 11a5) with dissimilar functional abilities are described. Strain 11a reductively dechlorinates TCE, 1,1-DCE, cis-DCE, trans-DCE, and vinyl chloride (VC) to ethene, while strain 11a5 dechlorinates TCE and all three DCE isomers only to VC. Each of these dechlorination reactions are coupled to growth by these strains. The VC dechlorination rate of strain 11a occurs at a rate of 258 nmol per min per mg of protein, about two times faster than previously reported stains. Strain 11a possesses the vcrA gene while strain 11a5 contains the tceA gene. Strains 11a and 11a5 share 100% 16S rRNA gene sequence identity with previously sequenced Dhc strains BAV1 and CBDB1, placing it within the Pinellas subgroup, and 85.4% and 89.5% of all genes present in the CBDB1 and BAV1 genomes were detected in strains 11a and 11a5, respectively, using a custom-designed microarray targeting four sequenced Dhc strains. Genes that were not detected in strains 11a and 11a5 are mostly within the high plasticity regions or integrated elements of the sequenced strains. This study reports the functional description and comparative genomics of two additional Dhc isolates and provides evidence that the observed functional incongruence between the activity and core genome phylogenies of Dhc strains is likely driven by the horizontal transfer of key reductive dehalogenase-encoding genes.
Project description:The syntrophic growth of strain 195 with Desulfovibrio vulgaris Hildenborough (DVH) and/or Methanobacterium congolense (MC) enhanced TCE dechlorination process by faster dechlorination rate and more robust growth. Transcriptomes of strain 195 grown in isolation, co- and tri-cultures were obtained by microarray experiments to find out the differential expressed genes corresponding to the syntrophic growth. Thus we can better understand the role of DVH and MC within this syntrophy.
Project description:Triclosan (TCS), an antibacterial compound commonly added to personal care products, could be an endocrine disruptor at low doses. Although TCS has been shown to alter fetal physiology, its effects in the developing fetal brain are unknown. The objective of this study was to use transcriptomics and systems analysis to determine significantly altered biological processes in the late gestation ovine fetal hypothalamus after direct or indirect exposure to low doses of TCS. We found that short-term infusion of TCS induces vigorous changes in the fetal hypothalamic transcriptomics, which are mainly related to food intake pathways and metabolism. For direct TCS exposure, chronically catheterized late gestation fetal sheep were infused with vehicle (n=4) or TCS (250 μg/day; n=4) iv. For indirect TCS exposure, TCS (100 μg/kg/day; n=3) or vehicle (n=3) was infused into the maternal circulation. Fetal hypothalami were collected after 2 days of infusion, and gene expression was measured using Agilent 15k ovine microarrays.
Project description:A multi-layered structure known as the cell envelope separates the controlled interior of Gram-negative bacteria from a fluctuating physical and chemical environment. Transcription of genes that determine cell envelope structure and function is commonly controlled by a class of environmental regulators known as two-component signal transduction systems (TCS), which are comprised of 1) sensor histidine kinases and 2) response regulators. To discover TCS genes that contribute to cell envelope function in the intracellular mammalian pathogen, Brucella ovis, we subjected a comprehensive collection of non-essential TCS mutants to compounds that disrupt cell membranes and the peptidoglycan cell wall. Our screen led to the discovery of three TCS proteins with unusual regulatory properties that coordinately function to confer resistance to cell envelope stress and to support B. ovis replication in the intracellular niche. This tripartite regulatory system consists of the conserved cell envelope regulator, CenR, and a previously uncharacterized TCS, EssRS. The CenR and EssR response regulators bind a shared set of sites on the B. ovis chromosomes to control transcription of an overlapping set of genes with cell envelope functions. CenR directly interacts with EssR and functions to stimulate phosphoryl transfer from the EssS kinase to EssR and control steady-state levels of EssR protein in the cell via a post-transcriptional mechanism. Our data provide evidence for a new mode of TCS cross-regulation in which a non-cognate response regulator both regulates activity and influences cellular levels of a cognate TCS system.
Project description:CD8 T cells (TCs) expressing active STAT5 (STAT5CA) transcription factors were found to be superior to un-manipulated counterparts in their long-term persistence, capacity to infiltrate a tumor, thrive in its microenvironment and induce its regression. STAT5CA induced sustained expression of genes controlling tissue homing, cytolytic granule composition, Tc-1-associated effector molecules (GranzymeB+/IFNg+/TNFa+/CCL3+ but IL-2-) and potential for secondary responses. Sustained expression of both T-Bet and Eomes transcription factors was correlated with STAT5 binding to their corresponding genes by ChIPSeq analyses. Additionally, STAT5CA-expressing CD8 TCs demonstrated reduced IL-6R/TGFbRII expression and dampened IL-6 and TGFb1 signaling. Altogether, concerted STAT5/T-Bet/Eomes regulation controls homing, recall responses and resistance to Tc-17 polarization in CD8 TCs. TCRP1A CD8 T lymphocytes were activated by their cognate P1A Ag. After 24h, an active form of Stat5 (STAT5CA) was introduced in activated cells. Culture was continued for another 48h to induce their differentiation in effector T cells. These activated T cells were injected in congeneic hosts and recovered 70 days later from hosts' spleen and lymph nodes: TCRP1A eTC-STAT5CA.
Project description:The syntrophic growth of strain 195 with Desulfovibrio vulgaris Hildenborough (DVH) and/or Methanobacterium congolense (MC) enhanced TCE dechlorination process by faster dechlorination rate and more robust growth. Transcriptomes of strain 195 grown in isolation, co- and tri-cultures were obtained by microarray experiments to find out the differential expressed genes corresponding to the syntrophic growth. Thus we can better understand the role of DVH and MC within this syntrophy. [Transcriptomic analysis]: Cells of pure strain 195 culture, co-culture and tri-culture were collected at the early exponential phase during TCE dechlorination process for RNA extraction, cDNA synthesis, fragmentation, labelling, and hybridization on microarray. We sought to obtain differential transcription of 195 genes in pure, co- and tri- cultures, in order to understand the role of DVH and MC in the syntrophy of strain 195.