Project description:To identify novel microRNAs that are associated with drought tolerance in two different cowpea genotypes, we generated small RNA sequences from adult cowpea plants under control and dought stress treatments. Over 79 million raw reads were generated and numerous novel microRNAs are identified, including some associated with drought tolerance.
Project description:Certain alpha- and beta-proteobacteria, the rhizobia, are able to infect legume roots, elicit root nodules, and live therein as endosymbiotic, nitrogen-fixing bacteroids. Host recognition and specificity are the results of consecutive programming events in bacteria and host plants in which important signaling molecules, e.g. plant flavonoids and rhizobial lipooligosaccharides, play key roles. Here, we introduce a new aspect of this symbiosis: the adaptive response to hosts. In contrast to host specificity, which determines early steps in bacteria-plant interaction, the adaptation to hosts refers to late events in mature bacteroids where specific genes are transcribed and translated that help the endosymbionts to meet the disparate environmental requirements imposed by the hosts in which they live. This concept was elaborated with Bradyrhizobium japonicum and three different legumes (soybean, cowpea, siratro). We systematically analyzed and compared the transcriptomes as well as the proteomes in bacteroids from root nodules of the three hosts. Transcripts and proteins were thus identified which are induced in only one of the three hosts. We then focused on those determinants that were congruent in the two data sets of host-specific transcripts and proteins, and arrived at 20 for soybean, 7 for siratro, and 4 for cowpea. One conspicuous gene cluster for a predicted ABC-type transporter, differentially expressed in siratro, was deleted. The corresponding mutant had a symbiotic defect on siratro rather than on soybean or cowpea. This result demonstrates the value of the applied approach and corroborates the host-specific adaptation concept. B. japonicum transcriptome was determined for the three different host plants
Project description:Certain alpha- and beta-proteobacteria, the rhizobia, are able to infect legume roots, elicit root nodules, and live therein as endosymbiotic, nitrogen-fixing bacteroids. Host recognition and specificity are the results of consecutive programming events in bacteria and host plants in which important signaling molecules, e.g. plant flavonoids and rhizobial lipooligosaccharides, play key roles. Here, we introduce a new aspect of this symbiosis: the adaptive response to hosts. In contrast to host specificity, which determines early steps in bacteria-plant interaction, the adaptation to hosts refers to late events in mature bacteroids where specific genes are transcribed and translated that help the endosymbionts to meet the disparate environmental requirements imposed by the hosts in which they live. This concept was elaborated with Bradyrhizobium japonicum and three different legumes (soybean, cowpea, siratro). We systematically analyzed and compared the transcriptomes as well as the proteomes in bacteroids from root nodules of the three hosts. Transcripts and proteins were thus identified which are induced in only one of the three hosts. We then focused on those determinants that were congruent in the two data sets of host-specific transcripts and proteins, and arrived at 20 for soybean, 7 for siratro, and 4 for cowpea. One conspicuous gene cluster for a predicted ABC-type transporter, differentially expressed in siratro, was deleted. The corresponding mutant had a symbiotic defect on siratro rather than on soybean or cowpea. This result demonstrates the value of the applied approach and corroborates the host-specific adaptation concept.
Project description:H. seropedicae is a diazotrophic and endophytic bacterium that associates with economically important grasses promoting plant growth and increasing productivity. To identify genes related to bacterial ability to colonize and promote plant growth wheat seedlings growing hydroponically in Hoaglandâs medium were inoculated with H. seropedicae the bacteria and incubated for 3 days. mRNA from the bacteria present in the root surface and in the plant medium were purified, depleted from rRNA and used for RNA-seq profiling. RT-qPCR analyses were conducted to confirm regulation of selected genes. Comparison of RNA profile of bacteria attached to the root and planktonic revealed an extensive metabolic adaptation to the epiphytic life style.
Project description:To identify novel microRNAs that are associated with drought tolerance in two different cowpea genotypes, we generated small RNA sequences from adult cowpea plants under control and dought stress treatments. Over 79 million raw reads were generated and numerous novel microRNAs are identified, including some associated with drought tolerance. Sequencing of small RNAs in two cowpea genotypes under control and drought stress conditions.