Project description:The transcriptome of Phanerochaete chrysosporium control mycelium was compared to the transcriptome of mycelium grown on oak acetonic extractives containing medium. The array probes were designed from gene models taken from the Joint Genome Institute (JGI, Department of Energy) Phanerochaete chrysosporium genome sequence version 1. The aim of this study was to determine gene expression changes in Phanerochaete chrysosporium grown on oak extract with a special focus on detoxification systems.
Project description:The biodegradation of lignocellulose requires the disruption of its lignin, which shields the metabolically assimilable polysaccharides in this recalcitrant natural composite. Although a variety of microorganisms can attack lignocellulose, white rot basidiomycetes are uniquely efficient at this process, cleaving the recalcitrant intermonomer linkages of lignin via extracellular oxidative mechanisms and mineralizing many of the resulting fragments to carbon dioxide via intracellular processes. Considerable progress has been made in understanding this process in the model white rot fungus Phanerochaete chrysosporium, which expresses important components of its ligninolytic system in response to nutrient limitation, as part of its secondary metabolism. Biochemical and genetic evidence point to an important role in P. chrysosporium for secreted lignin peroxidases (LiPs), manganese peroxidases (MnPs), and H2O2-producing oxidases, which are thought to work together to cleave lignin into low molecular weight fragments. However, many aspects of ligninolysis by P. chrysosporium remain poorly understood. Although a definitive picture of the entire ligninolytic system in P. chrysosporium is not yet attainable, transcriptome analyses of the fungus grown on wood can provide useful clues. With the advent of the initial genome assembly and annotations (v1.0 and v2.1), microarray-based transcriptome analysis allowed examination of transcript levels of P. chrysosporium genes when grown in ball-milled wood and in defined growth media. This approach provided useful insights but was limited to 10048 v2.1 targets and complicated by the unpredictable manner in which the fungus responds to unnatural carbon sources in submerged basal salts media. A complete, fully coordinated ligninolytic system is likely not expressed by P. chrysosporium on ball-milled wood, because a potential route for regulatory feedback has been eliminated: the cellulose and hemicellulose in this substrate is readily accessible to enzymes, and thus ligninolysis is not essential for growth. An alternative approach is to compare levels of gene expression just before and after the onset of secondary metabolism and extracellular substrate oxidation by P. chrysosporium as it utilizes solid wood as its carbon source. If this can be done, and decay of the substrate is also confirmed, then the genes undergoing marked changes in expression during the metabolic transition can be identified with greater confidence. Although not all such genes are expected to have roles in biodegradation, this strategy may identify interesting candidates for future investigation. Here we report RNAseq-based transcriptomes to characterize changes in gene expression that occur during the transition to ligninolytic metabolism. Phanerochaete chrysosporium was inoculated onto thin sections of wood. RNA was purified from colonized material after 40 and 96 hours. Single read 100 bp Illumina runs were performed.
Project description:Illumina HiSeq2500 technology was used to generate mRNA profiles from Phanerochaete chrysosporium treated with oak extractives for 1, 3 and 6h. 125bp pair-end reads were generated and aligned to the P.chrysosporium reference transcripts. (https://genome.jgi.doe.gov/Phchr2/Phchr2.home.html) using CLC Genomics Workbench 9.
Project description:Activity-based protein profiling (ABPP) has emerged as a versatile biochemical method for studying enzyme activity under various physiological conditions, with applications mainly in the field of biomedicine. Here, we show the potential of ABPP in the discovery of biocatalysts from Phanerochaete chrysosporium suspension cultures grown on beech wood chips. P. chrysosporium is a thermophilic white rot fungus that expresses a large enzyme repertoire for efficient lignocellulose hydrolysis. By employing a comparative ABPP approach, we could preselect lignocellulose-degrading serine and glycoside hydrolases from this enzyme repertoire for further biochemical characterization. In addition to the supernatant, also a substrate-bound protein fraction isolated from wood chips was screened for active enzymes. As heterologous expression of fungal enzymes remains challenging, our ABPP-mediated preselection procedure allows to focus experimental efforts on the most promising biocatalysts. Besides, we show that this approach can also be used to functionally annotate domains-of-unknown functions (DUFs). ABPP-based biocatalyst screening may thus allow the elucidation of biocatalysts with novel gene sequences, and we anticipate that the presented ABPP approach will find wider applications both in the discovery of novel biocatalysts and in revealing the catalytic activity of hitherto unknown enzymes.
Project description:Transcript profiles of Phanerochaete chrysosporium grown on different substrates were analyszed. Array design was based on the DoE's Joint Genome Institute's gene models for P. chrysosporium version s. The research goal is to identify genes essential for lignocellulose depolymerization.
Project description:Using whole genome microarrays based on the annotated genomes of Phanerochaete chrysosporium, we monitored the changes in its transcriptomes relevant to cell wall degradation during growth on three chemically distinct Populus trichocarpa (poplar) wood substrates. Results of this study are sumbitted for review in Biotechnology for Biofuels
Project description:The biodegradation of lignocellulose requires the disruption of its lignin, which shields the metabolically assimilable polysaccharides in this recalcitrant natural composite. Although a variety of microorganisms can attack lignocellulose, white rot basidiomycetes are uniquely efficient at this process, cleaving the recalcitrant intermonomer linkages of lignin via extracellular oxidative mechanisms and mineralizing many of the resulting fragments to carbon dioxide via intracellular processes. Considerable progress has been made in understanding this process in the model white rot fungus Phanerochaete chrysosporium, which expresses important components of its ligninolytic system in response to nutrient limitation, as part of its secondary metabolism. Biochemical and genetic evidence point to an important role in P. chrysosporium for secreted lignin peroxidases (LiPs), manganese peroxidases (MnPs), and H2O2-producing oxidases, which are thought to work together to cleave lignin into low molecular weight fragments. However, many aspects of ligninolysis by P. chrysosporium remain poorly understood. Although a definitive picture of the entire ligninolytic system in P. chrysosporium is not yet attainable, transcriptome analyses of the fungus grown on wood can provide useful clues. With the advent of the initial genome assembly and annotations (v1.0 and v2.1), microarray-based transcriptome analysis allowed examination of transcript levels of P. chrysosporium genes when grown in ball-milled wood and in defined growth media. This approach provided useful insights but was limited to 10048 v2.1 targets and complicated by the unpredictable manner in which the fungus responds to unnatural carbon sources in submerged basal salts media. A complete, fully coordinated ligninolytic system is likely not expressed by P. chrysosporium on ball-milled wood, because a potential route for regulatory feedback has been eliminated: the cellulose and hemicellulose in this substrate is readily accessible to enzymes, and thus ligninolysis is not essential for growth. An alternative approach is to compare levels of gene expression just before and after the onset of secondary metabolism and extracellular substrate oxidation by P. chrysosporium as it utilizes solid wood as its carbon source. If this can be done, and decay of the substrate is also confirmed, then the genes undergoing marked changes in expression during the metabolic transition can be identified with greater confidence. Although not all such genes are expected to have roles in biodegradation, this strategy may identify interesting candidates for future investigation. Here we report RNAseq-based transcriptomes to characterize changes in gene expression that occur during the transition to ligninolytic metabolism.