Project description:ErfA is a transcription factor of Pseudomonas aeruginosa. We here define the genome-wide binding sites of ErfA by DAP-seq in Pseudomonas aeruginosa PAO1 and IHMA87, Pseudomonas chlororaphis PA23, Pseudomonas protegens CHA0 and Pseudomonas putida KT2440.
Project description:Microbial communities of wetlands play key roles in the earth's ecology and stability. To elucidate the cold adaptation mechanisms of bacteria in plateau wetlands, we conducted comparative genomic analyses of Pseudomonas sivasensis and closely related lineages. The genome of P. sivasensis W-6, a cold-adapted bacterium isolated from the Napahai plateau wetland, was sequenced and analyzed. The genome length was 6,109,123 bp with a G+C content of 59.5%. Gene prediction yielded 5360 protein-coding sequences, 70 tRNAs, 24 gene islands, and 2 CRISPR sequences. The isolate contained evidence of horizontal gene transfer events during its evolution. Two prophages were predicted and indicated that W-6 was a lysogen. The cold adaptation of the W-6 strain showed psychrophilic rather than psychrotrophic characteristics. Cold-adapted bacterium W-6 can utilize glycogen and trehalose as resources, associated with carbohydrate-active enzymes, and survive in a low-temperature environment. In addition, the cold-adapted mechanisms of the W-6 included membrane fluidity by changing the unsaturated fatty acid profile, the two-component regulatory systems, anti-sense transcription, the role played by rpsU genes in the translation process, etc. The genome-wide analysis of W-6 provided a deeper understanding of cold-adapted strategies of bacteria in environments. We elucidated the adaptive mechanism of the psychrophilic W-6 strain for survival in a cold environment, which provided a basis for further study on host-phage coevolution.
Project description:Inoculation with plant growth-promoting rhizobacteria (PGPR) is an eco-friendly sustainable strategy for improving crop productivity in diverse environments under different conditions. Our earlier study demonstrated that Pseudomonas sivasensis 2RO45 significantly stimulated canola (Brassica napus L. var. napus) growth. The aim of the present study was to investigate the structural and functional dynamics in the canola rhizosphere microbiome after inoculation with PGPR P. sivasensis 2RO45. The results based on alpha diversity metrics showed that P. sivasensis 2RO45 did not significantly alter the diversity of the native soil microbiota. However, the introduced strain modified the taxonomic structure of microbial communities, increasing the abundance of plant beneficial microorganisms, e.g., bacteria affiliated with families Comamonadaceae, Vicinamibacteraceae, genus Streptomyces, and fungi assigned to Nectriaceae, Didymellaceae, Exophiala, Cyphellophora vermispora, and Mortierella minutissima. The analysis of community level physiological profiling (CLPP) revealed that microbial communities in the P. sivasensis 2RO45 treated canola rhizospheres were more metabolically active than those in the non-treated canola rhizosphere. Four carbon sources (phenols, polymers, carboxylic acids, and amino acids) were better metabolized by the microbial communities from the rhizosphere of plants inoculated with the P. sivasensis 2RO45 than non-inoculated canola rhizospheres. Based on the community-level physiological profiles, the functional diversity of the rhizosphere microbiome was altered by the P. sivasensis 2RO45 inoculation. Substrate utilization Shannon diversity (H) index and evenness (E) index were significantly increased in the treated canola plants. The study provides new insight into PGPR-canola interactions for sustainable agriculture development.