Project description:Coral disease is one of the major causes of reef degradation and therefore of concern to management and conservation efforts. Dark Spot Syndrome (DSS) was described in the early 1990’s as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease, since they can also be caused by physical injury in some species. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two geographic locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies with normal pigmentation and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip™ G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, however the amplicon pools were overwhelmed by coral 18S rRNA genes from S. siderea. Unlike a similar study on a white-plague-like disease, S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the healthy scleractinian coral S. siderea. 17 samples, coral tissue punches from healthy and also from dark-spot-affected Siderastrea Siderea coral in the Virgin Islands and the Dry Tortugas National Parks was collected for comparison of associated bacterial communities
Project description:The surprising observation that virtually the entire human genome is transcribed means we know very little about the function of many emerging classes of RNAs, except their astounding diversity. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their ability to classify classes of non-coding RNAs (ncRNAs). To address this, we developed CoRAL, a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length, cleavage specificity, and antisense transcription to distinguish between different ncRNA classes. We evaluated CoRAL using genome-wide small RNA sequencing (smRNA-seq) datasets from two human tissue types (brain and skin [GSE31037]), and were able to classify six different types of RNA transcripts with 79~80% accuracy in cross-validation experiments, and with 71~73% accuracy when CoRAL uses one tissue type for training and the other as validation. Analysis by CoRAL revealed that long intergenic ncRNAs, small cytoplasmic RNAs, and small nuclear RNAs show more tissue specificity, while microRNAs, small nucleolar, and transposon-derived RNAs are highly discernible and consistent across the two tissue types. The ability to consistently annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using smRNA-seq data in less characterized organisms.
Project description:Corals rely on a symbiosis with dinoflagellate algae (Symbiodinium spp.) to thrive in nutrient poor tropical oceans. However, the coral-algal symbiosis can break down during bleaching events, potentially leading to coral death. While genome-wide expression studies have shown the genes associated with the breakdown of this partnership, the full conglomerate of genes responsible for the establishment and maintenance of a healthy symbiosis remains unknown. Results from previous studies suggested little transcriptomic change associated with the establishment of symbiosis. In order to elucidate the transcriptomic response of the coral host in the presence of its associated symbiont, we utilized a comparative framework. Post-metamorphic aposymbiotic coral polyps of Orbicella faveolata were compared to symbiotic coral polyps 9 days after metamorphosis and the subsequent differential gene expression between control and treatment was quantified using cDNA microarray technology. Coral polyps exhibited differential expression of genes associated with nutrient metabolism and development, providing insight into pathways turned as a result of symbiosis driving early polyp growth. Furthermore, genes associated with lysosomal fusion were also upregulated, suggesting host regulation of symbiont densities soon after infection.