Project description:Persistence of Listeria monocytogenes in retail deli environments is a serious food safety issue, potentially leading to cross-contamination of ready-to-eat foods such as deli meats, salads, and cheeses. We previously discovered strong evidence of L. monocytogenes persistence in delis across multiple states. We hypothesized that this was correlated with isolates’ innate characteristics, such as biofilm-forming capacity or gene differences.We further chose four isolates for RNA-sequencing analysis and compared their global biofilm transcriptome to their global planktonic transcriptome. Analysis of biofilm vs planktonic gene expression did not show the expected differences in gene expression patterns. Overall, L. monocytogenes persistence in the deli environment is likely a matter of poor sanitation and/or facility design, rather than isolates’ biofilm-forming capacity, sanitizer tolerance, or genomic content
Project description:Survival of the foodborne pathogen Listeria monocytogenes in acidic environments (e.g., stomach and low pH foods) is vital to its transmission. L. monocytogenes grows at temperatures as low as 2°C, and refrigerated, ready-to-eat foods have been sources of L. monocytogenes outbreaks. The purpose of this study was to determine whether growth at a low temperature (i.e., 7°C) affects the response of L. monocytogenes to sudden acid shock.
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator HrcA, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DhrcA stationary phase cells were compared to wt to identify hrcA-dependent genes. We identified 61 HrcA-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression between ΔhrcA and wt. Combined with microarray analysis, Hidden Markov Model searches show HrcA directly repress at least 8 genes. Keywords: Listeria monocytogenes, HrcA regulon, stationary phase
Project description:The foodborne pathogen Listeria monocytogenes uses a number of transcriptional regulators, including the negative regulator CtsR, to control gene expression under different environmental conditions and in response to stress. Gene expression patterns of DctsR log phase cells were compared to both wt and ictsR-mcsA log phase cells grown with 0.5mM IPTG to identify CtsR-dependent genes.We identified 62 CtsR-dependent genes that showed significant expression ratios (adj. P < 0.05), with ≥ 1.5-fold differential expression either between ΔctsR and wt or between ΔctsR and ictsR-mcsA. Keywords: Listeria monocytogenes, CtsR regulon, log phase
Project description:Listeria monocytogenes strain 10403S has been studied extensively for stress response activity toward multiple stressors (acid, osmotic, cold, high temperature, etc.) as well as multiple stress regulons (SigB, CtsR, HrcA, etc.). Here we aimed to determine the transcriptional response of Listeria monocytogenes in early log phase towards the strong oxidative stress imposed by ClO2. The elucidation of such a response allows for further a more completel understanding of the mechanism of inactivation by sanitizers, specifically ClO2.
Project description:The stationary phase stress response transcriptome of the human bacterial pathogen Listeria monocytogenes was defined using RNA sequencing (RNA-Seq) with the Illumina Genome Analyzer. Specifically, bacterial transcriptomes were compared between stationary phase cells of L. monocytogenes 10403S and an otherwise isogenic DsigB mutant, which does not express the alternative sigma factor σB, a major regulator of genes contributing to stress response. Keywords: Transcriptome and differential expression analyses
Project description:Several Toll-like receptors are activated by Listeria monocytogenes infection, resulting in the activation of MyD88 dependent signaling pathway. However, the negative role of MyD88 in gene expresson is unclear. To address this, we performed microarray analysis of mRNAs from WT or MyD88-/- peritoneal macrophages infected with Listeria monocytogenes.
Project description:Listeria monocytogenes cells (strain LI0521) were digested with trypsin for the identification of surface proteins. The supernatant was filter-sterilized and subjected to identification by LC-MS/MS. Concurrently secreted or shed proteins were identified by isolating filter-sterilized supernatants following incubation of L. monocytogenes cells in buffer without trypsin. This was followed by trypsin digest of the sterilized supernatant and identification by LC-MS/MS.
Project description:These studies were designed to examine the transcription of Listeria monocytogenes strains 10403S and LO28 during intracellular replication in mammalian macrophages.