Project description:Selenium (Se) is an important trace element for many organisms and is incorporated into selenoproteins as selenocysteine (Sec). In eukaryotes, selenophosphate synthetase SPS2 is essential for Sec biosynthesis. In recent years, genetic disruptions of both Sec biosynthesis genes and selenoprotein genes have been investigated in different animal models, which provide important clues for understanding the Se metabolism and function in these organisms. However, a systematic study on the knockdown of SPS2 has not been performed in vivo. Herein, we conducted microarray experiments to study the transcriptome of fruit flies with knockdown of SPS2 in larval and adult stages. Several hundred differentially expressed genes were identified in each stage. Genes expression profiles of 12 fruit fly samples corresponding to larval and adult stages of SPS2 knockdown and control groups (3 replicates for each group) were analyzed using an Affymetrix Drosophila genome microarray.
Project description:In our research, we identified GLAD as a regulator gene of longevity and glia-associated neurodegeneration. This is the RNA-seq data of RNAi-GLAD fruit flies and the control (RNAi-GFP).
Project description:The dietary specialist fruit fly Drosophila sechellia has evolved to specialize on the toxic fruit of its host plant Morinda citrifolia. Toxicity of Morinda fruit is primarily due to high levels of octanoic acid (OA). Using RNA interference (RNAi), prior work found that knockdown of Osiris family genes Osiris 6 (Osi6), Osi7, and Osi8 led to increased susceptibility to OA in adult D. melanogaster flies, likely representing genes underlying a Quantitative Trait Locus (QTL) for OA resistance in D. sechellia. While genes in this major effect locus are beginning to be revealed, prior work has shown at least five regions of the genome contribute to OA resistance. Here, we identify new candidate OA resistance genes by performing differential gene expression analysis using RNA sequencing (RNA-seq) on control and OA-exposed D. sechellia flies. We found 104 significantly differentially expressed genes with annotated orthologs in D. melanogaster, including six Osiris gene family members, consistent with previous functional studies and gene expression analyses. Gene ontology (GO) term enrichment showed significant enrichment for cuticle development in upregulated genes and significant enrichment of immune and defense responses in downregulated genes suggesting important aspects of the physiology of D. sechellia that may play a role in OA resistance. In addition, we identified 5 candidate OA resistance genes that potentially underlie QTL peaks outside of the major effect region, representing promising new candidate genes for future functional studies.