Project description:Pancreatic ductal adenocarcinoma (PDA) cells have a distinct dependence on de novo ornithine synthesis from glutamine via ornithine aminotransferase (OAT), which supports polyamine synthesis and is required for tumor growth. This directional OAT activity is normally largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginase (ARG) to generate arginine-derived ornithine, the substrate for polyamine synthesis. This dependence associates with arginine depletion in PDA tumor microenvironment, and is driven by mutant KRAS, which induces the expression of OAT and polyamine synthesis enzymes, including the rate-limiting enzyme ornithine decarboxylase-1 (ODC1). Loss of OAT, but not ARG2, largely mimics loss of ODC1, altering the transcriptional profiles in PDA cells, which in turn correlate with alterations in open chromatin states.
Project description:There is a need to develop effective therapies for pancreatic ductal adenocarcinoma (PDA), a highly lethal malignancy with increasing incidence1 and poor prognosis2. Although targeting tumour metabolism has been the focus of intense investigation for more than a decade, tumour metabolic plasticity and high risk of toxicity have limited this anticancer strategy3,4. Here we use genetic and pharmacological approaches in human and mouse in vitro and in vivo models to show that PDA has a distinct dependence on de novo ornithine synthesis from glutamine. We find that this process, which is mediated through ornithine aminotransferase (OAT), supports polyamine synthesis and is required for tumour growth. This directional OAT activity is usually largely restricted to infancy and contrasts with the reliance of most adult normal tissues and other cancer types on arginine-derived ornithine for polyamine synthesis5,6. This dependency associates with arginine depletion in the PDA tumour microenvironment and is driven by mutant KRAS. Activated KRAS induces the expression of OAT and polyamine synthesis enzymes, leading to alterations in the transcriptome and open chromatin landscape in PDA tumour cells. The distinct dependence of PDA, but not normal tissue, on OAT-mediated de novo ornithine synthesis provides an attractive therapeutic window for treating patients with pancreatic cancer with minimal toxicity.
Project description:Diffuse intrinsic pontine glioma (DIPG) is an incurable malignant childhood brain tumour, with no active systemic therapies and a 5-year survival of less than 1%. Polyamines are small organic polycations that are essential for DNA replication, translation and cell proliferation. Ornithine decarboxylase 1 (ODC1), the rate limiting enzyme in polyamine synthesis, is irreversibly inhibited by difluoromethylornithine (DFMO). Herein we show that polyamine synthesis is upregulated in DIPG, leading to sensitivity to DFMO. DIPG cells compensate for ODC1 inhibition by upregulation of the polyamine transporter SLC3A2. Treatment with the polyamine transporter inhibitor AMXT 1501 reduced uptake of polyamines in DIPG cells, and co-administration of AMXT 1501 and DFMO led to potent in vitro activity, and significant extension of survival in three aggressive DIPG orthotopic animal models. Collectively, these results demonstrate the potential of dual targeting of polyamine synthesis and uptake as a therapeutic strategy for incurable DIPG.
Project description:Group 3 innate lymphoid cells (ILC3s) are RORγT+ lymphocytes that are predominately enriched in mucosal tissues and produce IL-22 and IL-17A. They are the innate counterparts of Th17. While Th17 lymphocytes utilize unique metabolic pathways in their differentiation program, it is unknown whether ILC3s make similar metabolic adaptations. We employed single-cell RNA sequencing and metabolomic profiling of intestinal ILC subsets to identify an enrichment of polyamine biosynthesis in ILC3s, converging on the rate-limiting enzyme ornithine decarboxylase (ODC1). In vitro and in vivo studies demonstrated that exogenous supplementation with the polyamine putrescine or its biosynthetic substrate, ornithine, enhanced ILC3 production of IL-22. Conditional deletion of ODC1 in ILC3s impaired mouse antibacterial defense against C. rodentium infection, which was associated with a decrease in anti-microbial peptide production by the intestinal epithelium. Furthermore, in a model of anti-CD40 colitis, deficiency of ODC1 in ILC3s markedly reduced the production of IL-22 and severity of inflammatory colitis. We conclude that cell-intrinsic polyamine biosynthesis facilitates efficient defense against enteric pathogens as well as augments autoimmune colitis, thus representing an attractive target to modulate ILC3 function in intestinal disease.
Project description:Here using mouse genetic models and human cancer cells, we show that YAP/TAZ reprogram polyamine metabolism to promote cell proliferation and tumor growth. Mechanistically, YAP/TAZ increases polyamine synthesis mainly through direct upregulation of the major rate-limiting enzyme ornithine decarboxylase 1. We further demonstrate that the polyamine spermidine sustains eukaryotic translation factor 5A (eIF5A) hypusination to support efficient translation of histone demethylase LSD1 that maintains a favored epigenetic status for YAP/TAZ-induced cell proliferation. Furthermore, inhibiting either polyamine synthesis or LSD1 can suppress YAP/TAZ-induced cell proliferation in mouse liver and human cancer cells. Thus our study identifies a YAP/TAZ-polyamine-eIF5A hypusination-LSD1 axis as required for YAP/TAZ-induced cell proliferation and tumor growth and suggests LSD1 as a critical target of polyamine in tumorigenesis.
Project description:Polyamines are aliphatic polycations that have emerged as important determinants of cell growth and viability in rapidly proliferating cells, including in the pathogenic protozoan parasite Leishmania donovani. In L. donovani, the polyamine spermidine is synthesized by the successive conversion of ornithine into putrescine (catalyzed by ornithine decarboxylase or ODC) and putrescine into spermidine (catalyzed by spermidine synthase or SPDSYN). Deletion of either ODC (del-odc) or SPDSYN (del-spdsyn) from the L. donovani genome renders these parasites auxotrophic for polyamines and these mutants are impaired in their ability to survive both in culture and within the mammalian host without the addition of exogenous polyamine supplementation. Significantly, del-odc parasites immediately cease proliferation after putrescine is removed from the culture media and perish within two weeks, while spermidine starved del-spdsyn mutants, which retain intracellular putrescine pools, show a slow-growth phenotype, and persist for several weeks in culture. To elucidate the key differences within the proteome of putrescine-starved del-odc cells and spermidine-starved del-spdsyn parasites, a shotgun quantitative proteomics approach was undertaken using TMT labeling and LC-MS/MS analysis. Briefly, three biological replicates each for mid-log phase del-odc and del-spdsyn promastigotes grown in the presence of exogenous putrescine (for del-odc) or spermidine (for del-spdsyn) supplementation were washed to remove the exogenous polyamine supplementation and incubated in polyamine-free media. At 24 and 48 h, cells from each biological replicate were isolated and prepared for tandem mass tag (TMT) labeling and downstream LC-MS/MS analyses. Peptides were identified using a database generated from the reference genome of L. donovani BPK282A1 strain. Changes in relative protein abundance for the polyamine-starved del-odc and del-spdsyn cell lines at 24 and 48 h were calculated by comparing aggregate total reporter ion intensities for each protein to that of the corresponding polyamine-supplemented 0-h timepoint.
Project description:Purpose: We recently reported that isogenic deletion of lysine decarboxylase (ΔcadA/SP_0916), an enzyme that catalyzes the biosynthesis of polyamine cadaverine in Streptococcus pneumoniae TIGR4 results in loss of capsular polysaccharide (CPS), which constitutes a novel mechanism of regulation of CPS. Here, we conducted RNA-Seq to elucidate molecular mechanisms of CPS regulation in polyamine synthesis impaired pneumococci. Result: Significantly differentially expressed genes in ΔcadA represent pneumococcal pathways involved in the biosynthesis of precursors for CPS and peptidoglycan. Conclusion: We establish a possible link and interchange between two cellular processes such as high energy demanding capsule production and oxidative stress responses in polyamine synthesis impaired pneumococci (ΔcadA).
Project description:Here using mouse genetic models and human cancer cells, we show that YAP/TAZ reprogram polyamine metabolism to promote cell proliferation and tumor growth. Mechanistically, YAP/TAZ increases polyamine synthesis mainly through direct upregulation of the major rate-limiting enzyme ornithine decarboxylase 1. We further demonstrate that the polyamine spermidine sustains eukaryotic translation factor 5A (eIF5A) hypusination to support efficient translation of histone demethylase LSD1 that maintains a favored epigenetic status for YAP/TAZ-induced cell proliferation. Furthermore, inhibiting either polyamine synthesis or LSD1 can suppress YAP/TAZ-induced cell proliferation in mouse liver and human cancer cells. Thus our study identifies a YAP/TAZ-polyamine-eIF5A hypusination-LSD1 axis as required for YAP/TAZ-induced cell proliferation and tumor growth and suggests LSD1 as a critical target of polyamine in tumorigenesis.
Project description:We report here a central role for polyamines in T cell differentiation and function. Deficiency in ornithine decarboxylase (ODC), a critical enzyme for polyamine synthesis, resulted in a profound failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage- defining transcription factors across TH1, TH2, TH17, and Treg polarizing conditions, and enhanced colitogenic potential. T cells deficient in deoxyhypusine synthase (DHPS) or deoxyhypusine hydroxylase (DOHH), which sequentially utilize polyamines to generate hypusine, phenocopied Odc-deficient T cells, and mice in which T cells lacked Dhps or Dohh developed colitis. Polyamine-hypusine pathway enzyme deficiency caused widespread chromatin and transcriptional dysregulation accompanied by alterations in histone methylation, histone acetylation, and TCA cycle metabolites. Epigenetic modulation by 2-hydroxyglutarate, or histone acetyltransferase inhibition, restored CD4+ T cell subset specification. Thus, polyamine synthesis via hypusine is critical for maintaining the epigenome to focus TH cell subset fidelity.
Project description:We report here a central role for polyamines in T cell differentiation and function. Deficiency in ornithine decarboxylase (ODC), a critical enzyme for polyamine synthesis, resulted in a profound failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage- defining transcription factors across TH1, TH2, TH17, and Treg polarizing conditions, and enhanced colitogenic potential. T cells deficient in deoxyhypusine synthase (DHPS) or deoxyhypusine hydroxylase (DOHH), which sequentially utilize polyamines to generate hypusine, phenocopied Odc-deficient T cells, and mice in which T cells lacked Dhps or Dohh developed colitis. Polyamine-hypusine pathway enzyme deficiency caused widespread chromatin and transcriptional dysregulation accompanied by alterations in histone methylation, histone acetylation, and TCA cycle metabolites. Epigenetic modulation by 2-hydroxyglutarate, or histone acetyltransferase inhibition, restored CD4+ T cell subset specification. Thus, polyamine synthesis via hypusine is critical for maintaining the epigenome to focus TH cell subset fidelity.