Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [HiChIP]
Ontology highlight
ABSTRACT: Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [HiChIP]
Project description:Human silencers have been shown to exist and regulate developmental gene expression. However, the functional importance of human silencers need to be elucidated such as the working mode and whether they can form “super-silencers”. Here, through interrogating two putative silencer components of FGF18 gene, we found that two silencers can cooperate via compensated chromatin interactions to form the “super-silencer”. Furthermore, double knock-out of two silencers exhibited synergistic upregulation of FGF18 expression and changes of cell identity. To disturb the “super-silencers”, we applied the combinational treatment of GSK343 and X5050 (“GR”). We found that GR led to severe loss of TADs and loops, while any single treatment only had mild changes. Such changes of TADs and loops may due to the decreased CTCF proteins upon the GR treatment. Moreover, GSK343 and X5050 can work synergistically to upregulated the super-silencer controlled apoptotic genes, thus gave rise to antitumor effects including apoptosis, cell cycle arrest and tumor growth inhibition. Overall, our data demonstrated the first example of “super-silencer” and showed that combinational usage of GSK343 and X5050 maybe the potential drug to curing cancers through disruption of “super-silencers”.
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth
Project description:Human silencers have been shown to exist and regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated, such as whether they can form “super-silencers” and whether they are linked to cancer progression. Here, through interrogating two putative silencer components of FGF18 gene, we found that two nearby silencers can cooperate via compensatory chromatin interactions to form a “super-silencer”. Furthermore, double knockout of two silencers exhibited synergistic upregulation of FGF18 expression and changes of cell identity. To perturb the “super-silencers”, we applied combinational treatment of an EZH2 inhibitor GSK343, and a REST inhibitor, X5050 (“GR”). We found that GR led to severe loss of TADs and loops, while the use of one inhibitor by itself only showed mild changes. Such changes in TADs and loops were associated with reduced CTCF and TOP2A mRNA levels. Moreover, GSK343 and X5050 synergistically upregulated super-silencer-controlled genes related to cell cycle, apoptosis and DNA damage, leading to anticancer effects both in vitro and in vivo. Overall, our data demonstrated the first example of a “super-silencer” and showed that combinational usage of GSK343 and X5050 to disrupt “super-silencers” could potentially lead to cancer ablation.
Project description:Human silencers have been shown to exist and regulate developmental gene expression. However, the functional importance of human silencers needs to be elucidated, such as whether they can form “super-silencers” and whether they are linked to cancer progression. Here, through interrogating two putative silencer components of FGF18 gene, we found that two nearby silencers can cooperate via compensatory chromatin interactions to form a “super-silencer”. Furthermore, double knockout of two silencers exhibited synergistic upregulation of FGF18 expression and changes of cell identity. To perturb the “super-silencers”, we applied combinational treatment of an EZH2 inhibitor GSK343, and a REST inhibitor, X5050 (“GR”). We found that GR led to severe loss of TADs and loops, while the use of one inhibitor by itself only showed mild changes. Such changes in TADs and loops were associated with reduced CTCF and TOP2A mRNA levels. Moreover, GSK343 and X5050 synergistically upregulated super-silencer-controlled genes related to cell cycle, apoptosis and DNA damage, leading to anticancer effects both in vitro and in vivo. Overall, our data demonstrated the first example of a “super-silencer” and showed that combinational usage of GSK343 and X5050 to disrupt “super-silencers” could potentially lead to cancer ablation.
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [4C-seq]
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [ATAC-seq]
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [ChIP-seq]
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [RNA-seq]
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [Hi-C]
Project description:Super-silencer perturbation by EZH2 and REST inhibition leads to large loss of chromatin interactions and reduction in cancer growth [Cut&Run]