Project description:The goal is to look at changes in the pattern of expression of the xylem transcriptome through the growth season in two spruces (Picea glauca and Picea abies).
Project description:We investigated root associated fungi in young Norway spruce (Picea abies) cuttings rooted from slow- and fast-growing trees showing variable growth rate in long-term field experiments and compared their roots’ gene expression patterns five and 18 months after adventitious root initiation. Gene expression patterns of adventitious roots could not be systematically linked with the growth phenotype at the initiation of root formation, and thus fundamental differences in the receptiveness of fungal symbionts could not be assumed.
Project description:Histone modification H3K27me3 profilings by the CUT&RUN method (Skene et al., 2017) were performed using embryonic callus and non-embryonic callus of Picea abies to identify genes related to somatic embryogenesis capacity.
Project description:Transcriptome analysis of small RNA was performed using pollen and embryonic callus, and vegetative tissues, needles of Picea abies to address differences in small RNA profiles between reproductive tissues and vegetative tissues in gymnosperm.
Project description:Coping of evergreen conifers of boreal forests with freezing temperatures on bright winter days puts the photosynthetic machinery in great risk of oxidative damage. To survive harsh winter conditions, conifers have evolved a unique but poorly characterised photoprotection mechanism, a sustained form of non-photochemical quenching (sustained NPQ). Here we focused on functional properties and underlying molecular mechanisms related to the development of sustained NPQ in Norway spruce (Picea abies). Data was collected during four consecutive years (2016-19) from trees growing in sun and shade habitats. When day temperatures dropped below -4°C, specific N-terminally triply phosphorylated LHCB1 isoform (3p-LHCII) and phosphorylated PSBS (p-PSBS) were detected in the thylakoid membrane. Development of sustained NPQ coincided with the highest level of 3p-LHCII and p-PSBS, occurring after prolonged combination of bright winter days and temperature close to -10°C. Artificial induction of both the sustained NPQ and recovery from naturally induced sustained NPQ provided information on differential dynamics and light-dependence of 3p-LHCII and p-PSBS accumulation and dephosphorylation as essential prerequisites of sustained NPQ. Data obtained collectively suggest three novel components related to sustained NPQ in spruce. (i) Freezing temperatures induce 3p-LHCII accumulation independently of light, which is suggested to initiate de-stacking of appressed thylakoid membranes due to increased electrostatic repulsion of adjacent membranes. (ii) p-PSBS accumulation is both light- and temperature-dependent and closely linked to the initiation of sustained NPQ, which (iii) in concert with PSII photoinhibition is likely to trigger sustained NPQ in spruce.