Project description:Aucuba (Garryaceae), which includes approximately ten evergreen woody species, is a genus endemic to East Asia. Their striking morphological features give Aucuba species remarkable ornamental value. Owing to high levels of morphological divergence and plasticity, species definitions of Aucuba remain perplexing and problematic. Here, we sequenced and characterized the complete plastid genomes (plastomes) of three Aucuba species: Aucuba chlorascens, Aucuba eriobotryifolia, and Aucuba japonica. Incorporating Aucuba plastomes available in GenBank, a total of seven Aucuba plastomes, representing six out of ten species of Aucuba, were used for comparative plastome analysis, phylogenetic analysis and divergence time estimation in this study. Comparative analyses revealed that plastomes of Aucuba are highly conserved in size, structure, gene content, and organization, and exhibit high levels of sequence similarity. Phylogenetic reconstruction based on 68 plastid protein-coding genes strongly supported the monophyly of Garryales, Garryaceae and Aucuba. Aucuba eriobotryifolia was sister to the other Aucuba species examined, consistent with its unique fused anther locule. The divergence time of Aucuba was estimated to be approximately late Miocene. Extant Aucuba species derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and climatic fluctuations.
| S-EPMC8819091 | biostudies-literature
Project description:Chloroplast whole genome of Aucuba chlorascens
Project description:Sexual differences were investigated to determine the significance of flower bud abortion in the dioecious shrub Aucuba japonica Thunb. The mean number of flowers per inflorescence and the mean number of flowering inflorescences (as opposed to aborted inflorescences) per individual were greater in males than in females in 1997 and 1998. Reproductive investment by males was 0.4-times (1997) and 1.4-times (1998) that by females. In addition, females aborted 30.9% (1997) and 42.7% (1998) of their total flower buds without blooming, whereas no male flower buds aborted. One of the architectural traits of this shrub is that in the year that a flower bud is produced at the shoot apex, the shoot will branch into two or more shoots. Thus, there was less sexual difference in the number of current shoots per individual than there was in the number of flowering inflorescences. The relationship between annual growth and reproduction, and the probability of reproduction in the following year, suggested that the higher investment in female reproduction was manifested as a cost for reproductive frequency rather than as a cost for annual growth. The spatial distribution of both males and females was clumped, which may be the result of clonal growth. In addition, overall sex ratios were not skewed and the number of sprouts did not differ significantly between sexes. These results suggested that flower bud abortion by females might reduce sexual dimorphism in terms of clonal growth.