ABSTRACT: De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and SSR Marker identification in sweet potato (Ipomoea batatas)
Project description:Investigation of whole transcriptome gene expression level during tuberous root formation and development in sweetpotato (Ipomoea batatas) cv. Guangshu 87 Identification of transcription factors (TFs) during tuberous root formation and development in sweetpotato (Ipomoea batatas) cv. Guangshu 87 A total of 7 samples were analyzed using RNA isolated from sweetpotato roots at 10, 15, 20, 30, 60, 90, 120days after transplanting. Each sample had two biological replicates.
Project description:Investigation of whole transcriptome gene expression level during tuberous root formation and development in sweetpotato (Ipomoea batatas) cv. Guangshu 87 Identification of transcription factors (TFs) during tuberous root formation and development in sweetpotato (Ipomoea batatas) cv. Guangshu 87
Project description:Sweet potato virus disease (SPVD) is one of the most devastating diseases affecting sweetpotato (Ipomoea batatas), an important food crop in developing countries. SPVD develops when sweetpotato plants are dually infected with sweet potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV). In the current study, global gene expression between SPVD affected plants and virus-tested control plants (VT) were compared in the susceptible ‘Beauregard’ and resistant ‘NASPOT 1’ (Nas) sweetpotato cultivars at 5, 9, 13 and 17 days post inoculation (DPI).
Project description:Global gene expression signatures was analysed through microarray expression profiling as a discovery platform to identify up and down regulated ESTs that represent genes involved in metabolic pathways in the leaf, fibrous root and storage root (tuber forming root) of sweetpotato (Ipomoea batatas) as affcted by high temperature stress (40oC) compared to ambient temperature (30oC). Also Global gene expression signatures was analysed by the same procedure to explore up and down regulated ESTs in tuberous root of sweet potato in comparison with fibrous root of Ipomoea cornea and identify unique ESTs that represent genes involved in tuber formation in sweet potato.