Project description:Here, we report the complete mitochondrial genome sequence of North Island brown kiwi(Apteryx mantelli). The genome is found to be 16,694 bp in length and has a base composition of A (30.74%), G (13.46%), C (26.50%), and T (29.30%). Similar to other Apteryx species, it contains a typically conserved structure including 13 protein-coding genes, 2 rRNA genes, 1 control region (D-loop), and 22tRNA genes. The proportion of coding sequences with a total length of 11,431 bp is 68.47%, which encodes 3776 amino acids. All protein-coding genes started with Met, and ND2, COX2, and COX3 ended by TAA as a stop codon. The lengths of 12S ribosomal RNA and 16S ribosomal RNA are 973 bp and 1596 bp, respectively. The length of control region is 1112 bp, ranging from 15,583 bp to 16,694 bp. The complete mitochondrial genome sequence provided here would be useful for further understanding the evolution of ratite and conservation genetics of A. mantelli.
Project description:Sporadic cases of visceral and neural nematode larva migrans have been diagnosed at necropsy in the endangered New Zealand kiwi (Apteryx spp.), but the causative organisms have not yet been definitively identified. From an initial group of five affected kiwi, PCR was performed on DNA extracted from archival formalin-fixed paraffin-embedded tissue sections in which larval nematodes had been histologically identified. Sequencing of positive results from four out of the five kiwi aligned with sequences from Toxocara cati, a nematode parasite whose definitive host is the domestic cat. PCR was then performed on a second group of 12 kiwi that had histologic inflammatory lesions consistent with larva migrans, but variable larval presence. Repeatable positive PCR results were only achieved in one tissue, in which larval organisms were histologically confirmed. This study supports the use of PCR as an alternative or adjunct to the morphological identification of nematode larvae in formalin-fixed histopathological samples, as well as showing that in investigation of larva migrans, PCR has greatest chance of success from sections where nematode larvae are evident histologically. The identification of Toxocara cati from lesions of larva migrans in kiwi reflects an indirect, parasite-mediated effect of an invasive mammalian species on a native species.
Project description:Brown kiwi (Apteryx mantelli Bartlett), a ratite endemic to New Zealand, is currently listed as "Vulnerable" under the IUCN classification system due to predation by introduced mammals. Operation Nest Egg (ONE) raises chicks and juveniles in predator-proof enclosures until they are large enough to defend themselves. These facilities experience an environmental accumulation of coccidial oocysts, which leads to severe morbidity and mortality of these kiwi. Four species of coccidia have been morphologically described from sporulated oocysts with additional opportunistic descriptions of endogenous stages. This research continues the morphological descriptions of these species of Eimeria with an additional novel morphotype also morphologically described. It also provides the first genetic characterisation targeting the mitochondrial cytochrome c oxidase I (COI) gene. Based on these findings, it was determined there are at least five morphotypes of Eimeria that infect brown kiwi and co-infections are common at the ONE facilities surveyed. The COI amplicon targeted for this study was sufficient to provide differentiation from other members of this genus. Sanger sequencing yielded ambiguous bases, indicating the need for more in-depth sequencing.