Project description:Blue mold, caused by Penicillium expansum, is responsible for postharvest losses of apple fruit, and threatens human health through production of the potent mycotoxin patulin. No major gene(s) providing resistance have as yet been identified, but recent studies indicate a quantitative control of the disease. An AryANE chip covering 60K apple transcripts was used to identify possible candidate gene(s) that are differentially regulated between resistant and susceptible cultivars upon P. expansum infection. Induction of cell wall related gene (PGIP1), and three genes involved in the ‘down-stream’ flavonoid biosynthesis pathway (CHS, FLS and LDOX), shows the fundamental role of cell wall as an important barrier, and contents of polyphenolic compounds of fruits as a quantitative components in enhancing disease resistance to blue mold. Moreover, exogenous application of Jasmonic acid hormone enhanced the defense mechanism in fruits. This is the first report linking Jasmonic acid and activation of cell wall and flavonoid pathway genes in apple fruit resistance to blue mold. Results provide an initial categorization of genes that are potentially involved in the resistance mechanism, and should be useful for developing tools for gene marker-assisted breeding of apple cultivars with an improved resistance to blue mold. SUBMITTER_CITATION: Ahmadi-Afzadi, M., Orsel Baldwin, M., Pelletier, S., Cournol, M., Proux-Wéra, E., Nybom, H., Renou, J.-P. (2018). Genome-wide expression analysis suggests a role for jasmonates in the resistance to blue mold in apple. Plant Growth Regulation, 85 (3), 375-387. , DOI : 10.1007/s10725-018-0388-2
Project description:The main objective of this analysis was to sequence the epigenome of the Apple (Malus domestica) doubled haploid 'Golden Delicious' tree. Our secondary objective was to identify differentially methylated regions between DNA purified from leaves and young fruits.
Project description:Gene expression associated with apple fruit ripening and postharvest treatments was studied to identify transcripts that are regulated by ethylene signaling.
Project description:The ripening of climacteric fruits, such as apple, is represented by a series of genetically programmed events orchestrated by the action of several hormones. In this work, we investigated the existence of a hormonal crosstalk between ethylene and auxin during the post-harvest ripening of three internationally known apple cultivars: ‘Golden Deli-cious’, ‘Granny Smith’ and ‘Fuji’. The normal climacteric ripening was impaired by the exogenous application of 1-methylcyclopropene (1-MCP) that effectively affected the production of ethylene and the physiological behaviour of specific ethylene-related qual-ity traits, such as fruit texture and the production of volatile organic compounds showed a de-novo accumulation of auxin following the application of 1-MCP. The RNA-Seq wide-transcriptome analysis evidenced as the competition at the level of the ethylene re-ceptors induced a cultivar-dependent transcription re-programming. The DEGs annota-tion carried out through the KEGG database identified as most genes were assigned to the plant hormone signaling transduction category, and specifically related to auxin and ethylene. The interplay between these two hormones was further assessed through a candidate gene analysis that highlighted a specific activation of GH3 and ILL genes, en-coding key steps in the process of the auxin homeostasis mechanism. Our results showed that a compromised ethylene metabolism at the onset of the climacteric ripening in apple can stimulate, in a cultivar-dependent fashion, an initial de-novo synthesis and de-conjugation of auxin as a tentative to restore a normal ripening progression.
Project description:A transcriptomic approach was implemented using two Penicillium species to identify genes related to fungal aggressiveness in apple fruit and loci contained in ungerminated conidia. Total RNA was isolated from ungerminated conidia and decayed apple fruit infected with P. expansum R19 (aggressive) or P. polonicum RS1 (weak). There were 2,442 differentially expressed genes (DEGs) between the R19 and RS1 in apple and comparisons within species between apple and conidia revealed 4,404 DEGs for R19, and 2935 for RS1, respectively. Gene ontology (GO) revealed differential regulation in fungal transport and metabolism genes expressed during decay, suggesting a flux in nutrient acquisition and detoxification strategies. In R19, the oxidoreductase GO category comprised 20% of all groups differentially expressed in decayed apple verses ungerminated conidia in addition to those involved in hydrogen peroxide metabolism. Ungerminated conidia from both species showed higher expression of genes encoding the glyoxylate shunt and beta-oxidation, specifying the earliest metabolic requirements for germination
Project description:Based on sensorial analysis over 4 years, 6 apple genotypes with contrasted fruit texture (mealy or not) were selected among a progeny. Apple samples were collected at 100 days after flowering (100 DAF), harvest (H), after 2 and 4 months of cold storage (60DAH and 120DAH respectively). 6 apple hybrids were analysed in dye-switch. Biological replicates are fruits from 2 to 4 different harvest years. Each mealy hybrid was compared to a non-mealy hybrid from the same harvest year in 12 dye-swap 3 pairs at 4 four time points).
Project description:Molecular events regulating apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, a parallel transcriptome profile analysis, scanning electron microscopic (SEM) examination and systematic physiological characterization were performed on two apple cultivars, Honeycrisp (HC) and Cripps Pink (CP), which have distinct ripening features and texture attributes. Systematic physiological characterization of fruit ripening based on weekly maturity data indicated substantial differences in fruit crispness and firmness at comparable ripening stages. SEM images of fruit cortex tissues prepared from fruits with equivalent maturity suggested that the cell wall thickness may contribute to the observed phenotypes of fruit firmness and crispness. A high-density long-oligo apple microarray consisting of duplex 190,135 cross-hybridization-free 50-70-mer isothermal probes, and representing 23,997 UniGene clusters, was manufactured on a Nimblegen array platform. Transcriptome profiling identified a total of 1793 and 1209 UniGene clusters differentially expressed during ripening from cortex tissues of HC and CP, respectively. UniGenes implicated in hormone metabolism and response, cell wall biosynthesis and modification and those encoding transcription factors were among the prominent functional groups. Between the two cultivars, most of the identified UniGenes were similarly regulated during fruit ripening; however, a short list of gene families or specific family members exhibited distinct expression patterns between the two cultivars, which may represent candidate genes regulating cultivar-specific apple fruit ripening patterns and quality attributes. Using a single color labeling system, a total of 24 microarray slides were utilized, one for each cortex tissue sample, for transcriptome profiling analysis. 2 cultivars x 3 developmental stages x 4 biological replicates.
Project description:Comparison of seed of two different types of developing fruits in apple: central and lateral. Our objective is to find transcriptomic signatures that allow to explain the physiological drop of young lateral fruitlets Apple seeds transcriptomes were generated by deep sequencing by triplicate from seeds collected from central and lateral fruitlets at 20 days after petal fall (DAPF)