Project description:ETR1 receptor mutants etr1-3 (loss-of-function) and etr1-7 (gain-of-function) were treated with either ethylene or its biosynthetic precursor, ACC (1-aminocyclopropane-1-carboxylate) for 0, 1, 4, and 24 hours.
Project description:ACC Synthase (ACS) is the key regulatory enzyme in the ethylene biosynthesis in plants. It catalyzes the conversion of s-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. Arabidopsis has nine ACS genes. The goal of the project is to inactivate each gene by insertional mutagenesis and amiRNA technology and eventually construct a null ACS mutant. We have been recently able to achieve this goal. Furthermore, we wanted to know how inactivation of individual ACS genes affects global gene expression. Keywords: ACS mutant comprrison; global gene expression.
Project description:ACC Synthase (ACS) is the key regulatory enzyme in the ethylene biosynthesis in plants. It catalyzes the conversion of s-adenosylmethionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene. Arabidopsis has nine ACS genes. The goal of the project is to inactivate each gene by insertional mutagenesis and amiRNA technology and eventually construct a null ACS mutant. We have been recently able to achieve this goal. Furthermore, we wanted to know how inactivation of individual ACS genes affects global gene expression. Keywords: ACS mutant comprrison; global gene expression. Triplicate samples of 10-day light grown seedling from each ACS mutant was used for microarray analysis.
Project description:The purpose of this experiment was to study the effects of the bacterial enzyme ACC deaminase on the transcriptional changes within canola seedlings. Seedlings from seeds treated with the plant growth-promoting bacteria Pseudomonas putida UW4 which expresses a high level of ACC deaminase and its ACC deaminase-minus mutant were compared to untreated seedlings along with a transgenic line of canola expressing the ACC deaminase enzyme in the roots. ACC deaminase breaks down 1-aminocyclopropane-1-carboxylic acid, the biosynthetic precursor to the plant hormone ethylene, lowering ethylene levels and improving plant fitness. Plants treated with the ACC deaminase-containing bacteria and transgenic plants expressing ACC deaminase are more tolerant to a variet of stresses and this expression study helps to illuminate the pathways responsible for the growth promotion provided by the beneficial bacteria and the role of the enzyme itself.
Project description:Ethylene plays major roles in adaptive growth of rice plants in water-saturated soil; however, ethylene signaling in rice is largely unclear. Here, we report identification and characterization of ethylene-response mutants based on distinct ethylene-response phenotypes of dark-grown rice seedlings.
Project description:Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia) stress. The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced metabolic hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pre-treatment on hypoxia survival of primary Arabidopsis thaliana root tips.
Project description:Ethylene plays major roles in adaptive growth of rice plants in water-saturated soil; however, ethylene signaling in rice is largely unclear. Here, we report identification and characterization of ethylene-response mutants based on distinct ethylene-response phenotypes of dark-grown rice seedlings.
Project description:Understanding how developmental and environmental signals are integrated to produce specific responses is one of the main challenges of modern biology. Hormones and, most importantly, interactions between different hormones serve as crucial regulators of plant growth and development, playing central roles in the coordination of internal developmental processes with the environment. Herein, a combination of physiological, genetic, cellular, and whole-genome expression profiling approaches has been employed to investigate the mechanisms of interaction between two key plant hormones, ethylene and auxin. Quantification of the morphological effects of ethylene and auxin in a variety of mutant backgrounds indicates that auxin biosynthesis, transport, signaling and response are required for the ethylene-induced growth inhibition in roots but not in hypocotyls. Analysis of the activation of early auxin and ethylene responses at cellular level, as well as of global changes in gene expression in the wild type versus auxin and ethylene mutants, suggests a simple mechanistic model for the interaction between these two hormones in roots. This model not only implies existence of several levels of interaction but also provides a likely explanation for the strong ethylene response defects observed in auxin mutants. Keywords: Genetic modification. Plant hormone response
Project description:Ethylene plays major roles in adaptive growth of rice plants in water-saturated soil; however, ethylene signaling in rice is largely unclear. Here, we report identification and characterization of ethylene-response mutants based on distinct ethylene-response phenotypes of dark-grown rice seedlings.
Project description:Ethylene-dependent gene expression was assayed by treating with 1 uM ACC, an ethylene precursor, or a control treatment to Arabidopsis seedlings by transferring 6 day old Arabidopsis grown on a a nylon mesh to fresh ACC-containing or control media Seedling roots were harvested 0, .5, 1, 2, 4, 8, 12, and 24 hours after treatment and the resultant RNA was used for microarray analysis to determine the kinetic profiles of auxin-responsive gene expression