Project description:To reveal functional diversity of neurons in the septal area of the forebrain, we isolated neuron nuclei from septal tissues of wild-type mice by FACS sorting and subjected them to single nucleus (sn)RNA sequencing with the 10x platform.
Project description:Hunger, driven by negative energy balance, elicits the search for and consumption of food. In mammals, this is orchestrated principally through the activity of neurons in the hypothalamus, direct manipulation of which can potently drive food intake. However, the neural circuits outside of the hypothalamus that control feeding are poorly understood. Here, we identify two functionally opponent cell types within the dorsal raphe nucleus (DRN), marked by the vesicular transporters for GABA (Vgat) or glutamate (VGLUT3), that project to many known feeding centers and rapidly control feeding. We find that DRNVgat neurons drive, while DRNVGLUT3 neurons suppress, food intake. Furthermore, through the development and application of cell type-specific molecular profiling technologies, we identify many differentially expressed transmembrane receptors, which may represent unique druggable targets. Local application of agonists for these receptors potently modulates feeding, recapitulating the effects of cell-specific manipulations. Together, these data establish a key role for the DRN in controlling food intake and add an important anatomic site that controls energy balance.
Project description:Neuroanatomical methods enable high-resolution mapping of neural circuitry, but do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of a novel approach for molecularly profiling projective neurons. We show that ribosomes can be labeled with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from cells expressing GFP. We generated a transgenic mouse encoding a nanobody-ribosomal protein fusion (Syn-NBL10) and used a retrograde virus (CAV) encoding GFP to immunoprecipitate ribosomes from projection neurons. This enabled us to profile neurons projecting to the nucleus accumbens. The current method provides a new means for profiling neurons based on their projections. Translating mRNAs immunoprecipitated from neurons projecting to the nucleus accumbens. Each Input and IP sample corrspond to a pooled group of 6 mice.
Project description:Transcriptional diversity of mouse olivocochlear neurons (OCNs) was examined using single-nucleus sequencing of brainstem cholinergic neurons at P1, P5, and P26-P28. This dataset includes multiple brainstem cell types, including OCNs and several other populations of cranial motor neurons.