Project description:To better elucidate the complex interaction between COPD and NSCLC, we comprehensively characterized immune cell dynamics and transcriptome profiles of malignant cells in tumor tissues from NSCLC patients with COPD using single-cell RNA sequencing (scRNA-seq). We observed increased fractions of exhausted CD8+ T cells, CCL18+ tumor-associated macrophages (TAMs), and LAMP3+ dendritic cells (DCs) in the immune component of NSCLC with COPD compared with the findings in NSCLC without COPD. Remarkably, a critical cluster of malignant cells from NSCLC with COPD samples, characterized by high expression of CD74, significantly exhibited an epithelial-immune dual signature and was associated with poor prognosis. Interestingly, we found that CD74 facilitated phosphorylation of MAPK/STAT3 to mediate PD-L1 expression and further suppressed CD8+ T cell function, triggering LC progression. Our study provides a comprehensive profiling of the multi-cellular ecosystem of NSCLC with coexisting COPD and reveals that CD74+ cancer cells are potential targets for immunotherapy.
Project description:The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood. To identify a phenotypically robust core set of genes and pathways that facilitate cancer cell-intrinsic evasion to cytotoxic T lymphocyte (CTL)-mediated killing, we performed genome-wide CRISPR screens across a panel of genetically diverse cancer models cultured in the presence of CTLs. We uncovered a core set of 182 genes whose individual perturbation leads to either cancer cell sensitivity or resistance to CTL toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated nature by which genes and pathways act to orchestrate intrinsic CTL evasion, with discrete functional modules controlling the interferon response and tumor necrosis factor alpha (TNFa)-induced cytotoxicity emerging as dominant sub-phenotypes. Our data establish a central role for previously identified negative regulators of the Type II interferon response (e.g. Ptpn2, Socs1, Adar1) in mediating intrinsic CTL evasion and demonstrate a requirement for the lipid droplet related gene Fitm2 for maintaining cell fitness upon exposure to interferon gamma (IFNg). Additionally, we identify the autophagy pathway as a conserved mediator of cancer intrinsic CTL evasion, required to resist cytokine-mediated cytotoxicity caused by IFNg and TNFa. By mapping cytokine- and CTL-based genetic interactions, as well as in vivo CRISPR screens, we illuminate the pleiotropic nature by which autophagy acts to orchestrate intrinsic CTL evasion and highlight the importance of our observed effects within the tumor microenvironment. Collectively, our data expands our appreciation of the genetic circuits that contribute to cancer intrinsic immune evasion, highlighting the importance of leveraging systematic functional genomics approaches for furthering our understanding of this biology.
Project description:The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood. To identify a phenotypically robust core set of genes and pathways that facilitate cancer cell-intrinsic evasion to cytotoxic T lymphocyte (CTL)-mediated killing, we performed genome-wide CRISPR screens across a panel of genetically diverse cancer models cultured in the presence of CTLs. We uncovered a core set of 182 genes whose individual perturbation leads to either cancer cell sensitivity or resistance to CTL toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated nature by which genes and pathways act to orchestrate intrinsic CTL evasion, with discrete functional modules controlling the interferon response and tumor necrosis factor alpha (TNFa)-induced cytotoxicity emerging as dominant sub-phenotypes. Our data establish a central role for previously identified negative regulators of the Type II interferon response (e.g. Ptpn2, Socs1, Adar1) in mediating intrinsic CTL evasion and demonstrate a requirement for the lipid droplet related gene Fitm2 for maintaining cell fitness upon exposure to interferon gamma (IFNg). Additionally, we identify the autophagy pathway as a conserved mediator of cancer intrinsic CTL evasion, required to resist cytokine-mediated cytotoxicity caused by IFNg and TNFa. By mapping cytokine- and CTL-based genetic interactions, as well as in vivo CRISPR screens, we illuminate the pleiotropic nature by which autophagy acts to orchestrate intrinsic CTL evasion and highlight the importance of our observed effects within the tumor microenvironment. Collectively, our data expands our appreciation of the genetic circuits that contribute to cancer intrinsic immune evasion, highlighting the importance of leveraging systematic functional genomics approaches for furthering our understanding of this biology.
Project description:The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood. To identify a phenotypically robust core set of genes and pathways that facilitate cancer cell-intrinsic evasion to cytotoxic T lymphocyte (CTL)-mediated killing, we performed genome-wide CRISPR screens across a panel of genetically diverse cancer models cultured in the presence of CTLs. We uncovered a core set of 182 genes whose individual perturbation leads to either cancer cell sensitivity or resistance to CTL toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated nature by which genes and pathways act to orchestrate intrinsic CTL evasion, with discrete functional modules controlling the interferon response and tumor necrosis factor alpha (TNFa)-induced cytotoxicity emerging as dominant sub-phenotypes. Our data establish a central role for previously identified negative regulators of the Type II interferon response (e.g. Ptpn2, Socs1, Adar1) in mediating intrinsic CTL evasion and demonstrate a requirement for the lipid droplet related gene Fitm2 for maintaining cell fitness upon exposure to interferon gamma (IFNg). Additionally, we identify the autophagy pathway as a conserved mediator of cancer intrinsic CTL evasion, required to resist cytokine-mediated cytotoxicity caused by IFNg and TNFa. By mapping cytokine- and CTL-based genetic interactions, as well as in vivo CRISPR screens, we illuminate the pleiotropic nature by which autophagy acts to orchestrate intrinsic CTL evasion and highlight the importance of our observed effects within the tumor microenvironment. Collectively, our data expands our appreciation of the genetic circuits that contribute to cancer intrinsic immune evasion, highlighting the importance of leveraging systematic functional genomics approaches for furthering our understanding of this biology.
Project description:The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood. To identify a phenotypically robust core set of genes and pathways that facilitate cancer cell-intrinsic evasion to cytotoxic T lymphocyte (CTL)-mediated killing, we performed genome-wide CRISPR screens across a panel of genetically diverse cancer models cultured in the presence of CTLs. We uncovered a core set of 182 genes whose individual perturbation leads to either cancer cell sensitivity or resistance to CTL toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated nature by which genes and pathways act to orchestrate intrinsic CTL evasion, with discrete functional modules controlling the interferon response and tumor necrosis factor alpha (TNFa)-induced cytotoxicity emerging as dominant sub-phenotypes. Our data establish a central role for previously identified negative regulators of the Type II interferon response (e.g. Ptpn2, Socs1, Adar1) in mediating intrinsic CTL evasion and demonstrate a requirement for the lipid droplet related gene Fitm2 for maintaining cell fitness upon exposure to interferon gamma (IFNg). Additionally, we identify the autophagy pathway as a conserved mediator of cancer intrinsic CTL evasion, required to resist cytokine-mediated cytotoxicity caused by IFNg and TNFa. By mapping cytokine- and CTL-based genetic interactions, as well as in vivo CRISPR screens, we illuminate the pleiotropic nature by which autophagy acts to orchestrate intrinsic CTL evasion and highlight the importance of our observed effects within the tumor microenvironment. Collectively, our data expands our appreciation of the genetic circuits that contribute to cancer intrinsic immune evasion, highlighting the importance of leveraging systematic functional genomics approaches for furthering our understanding of this biology.
Project description:Preeclampsia is a disease of pregnant women, which is characterized by hypertension, proteinuria and chronic inflammation. There is a growing body of evidence that cause of preeclampsia lies within immunological aspect of pregnancy. This study aimed to analyze the role of CD74 in preeclampsia with a focus on its influence on communication between placental macrophages (Hofbauer cells) and trophoblasts. We have found CD74 to be highly dysregulated in preeclamptic placenta by real-time RT-PCR and Western blot methods. We identified Hofbauer cells to express the highest levels of CD74 in placenta by immunofluorescence and flow cytometry and that CD74 in preeclamptic Hofbauer cells is lower than in controls. We have performed a transcriptome analysis on human blood monocyte-derived macrophages that were non- or IL-4-activated and treated with small interfering RNA against CD74 (siRNA CD74) or non-targeting siRNA (siRNA non-targeting) as control.
Project description:CD74 (invariant chain), expressed on B cells, is directly involved in shaping the B cell repertoire by regulating their survival in health and disease. Binding of its ligand, macrophage migration inhibitory factor (MIF), induces a cascade that results in CD74 intramembrane proteolysis, and the release of the CD74 intracellular domain (CD74-ICD). CD74-ICD translocates to the nucleus where it induces activation of transcription. In the current study, we characterized the transcription factor activity of CD74-ICD. Following histone modifications we are able to characterize CD74's binding sites as regulatory areas.