Project description:These arrays were done in a study to probe Y-by-parent-of-origin effects on gene expression across two geographically diverse (Ohio, USA and Republic of Congo, Africa) Y-chromosome lineages (Cs or Con), and two modes of Y chromosome transmission (paternally or maternally). Males harbor one of two Y chromosomes extracted from natural populations. Y chromosomes are inherited maternally or paternally. Therefore, 4 nodes in the design matrix. Each node was competitively hybridized to each of the other three nodes in 2 dual-channel arrays, dye-swapped.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:The E3 ubiquitin ligase Ube3a is biallelically expressed in mitotic cells, including neural progenitors and glial cells, raising the possibility that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent-of-origin. To test this possibility, we engineered a mouse line that harbors an autism-linked UBE3A-T485A (T508A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We found that both paternally and maternally expressed UBE3A-T485A resulted in elevated UBE3A activity in neural progenitors and glial cells where Ube3a is biallelically expressed. Expression of UBE3A-T485A from the maternal allele, but not the paternal one, led to a persistent elevation of UBE3A activity in postmitotic neurons. Maternal, paternal, or biparental inheritance of the mutant allele promoted embryonic expansion of Zcchc12 lineage interneurons which mature into Sst and Calb2 expressing interneurons, and caused a spectrum of behavioral phenotypes that differed by parent-of-origin. Phenotypes were distinct from those observed in Angelman syndrome model mice that harbor a Ube3a maternal loss-of-function allele. Our study shows that the UBE3A-T485A gain-of-function mutation causes distinct neurodevelopmental phenotypes when inherited maternally or paternally. These findings have clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Project description:The E3 ubiquitin ligase Ube3a is biallelically expressed in mitotic cells, including neural progenitors and glial cells, raising the possibility that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent-of-origin. To test this possibility, we engineered a mouse line that harbors an autism-linked UBE3A-T485A (T508A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We found that both paternally and maternally expressed UBE3A-T485A resulted in elevated UBE3A activity in neural progenitors and glial cells where Ube3a is biallelically expressed. Expression of UBE3A-T485A from the maternal allele, but not the paternal one, led to a persistent elevation of UBE3A activity in postmitotic neurons. Maternal, paternal, or biparental inheritance of the mutant allele promoted embryonic expansion of Zcchc12 lineage interneurons which mature into Sst and Calb2 expressing interneurons, and caused a spectrum of behavioral phenotypes that differed by parent-of-origin. Phenotypes were distinct from those observed in Angelman syndrome model mice that harbor a Ube3a maternal loss-of-function allele. Our study shows that the UBE3A-T485A gain-of-function mutation causes distinct neurodevelopmental phenotypes when inherited maternally or paternally. These findings have clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Imprinted genes are monoallelically expressed according to parental inheritance. The maternally and paternally inherited alleles are distinguished epigenetically by DNA methylation and histone modifications. Chromosome-wide Chromatin immunoprecipitation (ChIP) and MIRA analysis of MatDup.dist7 and PatDup.dist7 MEFs provided a panoramic map of reciprocal allele-specific histone modifications and DNA methylation at imprinted genes along distal chromosome 7 and 15.
Project description:Imprinted genes are monoallelically expressed according to parental inheritance. The maternally and paternally inherited alleles are distinguished epigenetically by DNA methylation and histone modifications. Chromosome-wide Chromatin immunoprecipitation (ChIP) and MIRA analysis of MatDup.dist7 and PatDup.dist7 MEFs provided a panoramic map of reciprocal allele-specific histone modifications and DNA methylation at imprinted genes along distal chromosome 7 and 15.
Project description:Imprinted genes are monoallelically expressed according to parental inheritance. The maternally and paternally inherited alleles are distinguished epigenetically by DNA methylation and histone modifications. Chromosome-wide Chromatin immunoprecipitation (ChIP) and MIRA analysis of MatDup.dist7 and PatDup.dist7 MEFs provided a panoramic map of reciprocal allele-specific histone modifications and DNA methylation at imprinted genes along distal chromosome 7 and 15.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.