Project description:Today, swine is regarded as promising biomedical model, however, its gastrointestinal microbiome dynamics have been less investigated than that of humans or murine models . The aim of this study was to establish a high-throughput multi-omics pipeline to investigate the healthy fecal microbiome of swine and its temporal dynamics as basis for future infection studies. To this end, a homogenization protocol based on deep-frozen feces followed by integrated sample preparation for different meta-omics analyses was developed. Subsequent data integration linked microbiome composition with function, i.e. expressed proteins and secreted metabolites.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:To investigate the TVA diet's effect on mouse gut microbiome, we fed C57/BL6 mice with TVA diet or CON diet for 18 days We then collected feces of the mice and performed 16S ribosomal RNA (rRNA) sequencing.
Project description:Seasonal influenza outbreaks represent a large burden for the healthcare system as well as the economy. While the role of the microbiome in the context of various diseases has been elucidated, the effects on the respiratory and gastrointestinal microbiome during influenza illness is largely unknown. Therefore, this study aimed to characterize the temporal development of the respiratory and gastrointestinal microbiome of swine using a multi-omics approach prior and during influenza infection. Swine is a suitable animal model for influenza research, as it is closely related to humans and a natural host for influenza viruses. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae families in the upper respiratory tract. To our surprise, temporal development of the respiratory microbiome was not affected. Furthermore, we observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, we found increased abundances of Prevotellaceae, while Clostridiaceae and Lachnospiraceae decreased. Furthermore, metaproteomics showed that the functional composition of the microbiome, known to be robust and stable under healthy conditions, was heavily affected by the influenza infection. Metabolome analysis proved increased amounts of short-chain fatty acids in the gastrointestinal tract, which might be involved in faster recovery. Furthermore, metaproteome data suggest a possible immune response towards flagellated Clostridia induced during the infection. Therefore, it can be assumed that the respiratory infection with IAV caused a systemic effect in the porcine host and microbiome.
Project description:In rodents, brown adipose tissue (BAT) contributes to whole body energy expenditure and low BAT activity is related to hepatic fat accumulation, partially attributable to the gut microbiome. Little is known of these relationships in humans. In adults (n=60), we assessed hepatic fat and cold-stimulated BAT activity utilizing magnetic resonance imaging and the gut microbiome with 16S sequencing. We transplanted gnotobiotic mice with feces from humans to assess the transferability of BAT activity and NAFLD through the microbiome. Individuals with NAFLD (n=29) had lower BAT activity than those without and BAT activity was inversely related to hepatic fat. Although the fecal microbiome was different in those with NAFLD, no differences were observed in relation to BAT activity and neither of these phenotypic traits were transmissible through fecal transplant to gnotobiotic mice. Thus, low BAT activity is associated with hepatic steatosis but this is not mediated through the gut microbiota.
Project description:Complete Microbiome Metagenomics from feces of 461 IBD patients; The sequencer used was the Illumina HiSeq 2000 with a paired end reads design, reflected in the 2 FastQ format files per sample.