Project description:Marine microbes drive pivotal transformations in planetary-scale elemental cycles and have crucial impacts on global biogeochemical processes. Metaproteomics is a powerful tool for assessing the metabolic diversity and function of marine microbes. However, hundreds of liters of seawater are required for metaproteomic analysis due to the sparsity of microbial populations in seawater, which poses a substantial challenge to the widespread application of marine metaproteomics, particularly for deep seawater. Herein, a sensitive marine metaproteomics workflow, named SMMP, was developed by integrating polycarbonate filter-assisted microbial enrichment, solid-phase alkylation-based anti-interference metaproteome sample preparation and nanoLC-MS/MS for trace peptide separation and characterization. The method provided more than 8500 proteins from 1 L of bathypelagic seawater samples, which covered diverse microorganisms and crucial functions, e.g. the detection of key enzymes associated with the Wood-Ljungdahl pathway. Then, we applied SMMP to investigate vertical variations in the metabolic expression patterns of marine microorganisms from the euphotic zone to the bathypelagic zone. Methane oxidation and carbon monoxide (CO) oxidation were active processes, especially in the bathypelagic zone, as they provided a remarkable energy supply for the growth and proliferation of heterotrophic microorganisms. In addition, marker protein profiles detected related to ammonia transport, ammonia oxidation, and carbon fixation highlighted that Thaumarchaeota played a critical role in primary production based on the coupled carbon-nitrogen process, contributing to the storage of carbon and nitrogen in the bathypelagic regions. SMMP has low microbial input requirements and yields in-depth metaproteome analysis, making it a prospective approach for comprehensive marine metaproteomic investigations.
Project description:Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Though recently discovered, trace gas oxidation is now recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. While trace gas oxidation has been reported in nine phyla of bacteria, it was not known whether archaea also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurred during both growth and survival across a wide range of temperatures (10 to 70°C). Genomic analysis demonstrated that A. brierleyi encodes a canonical carbon monoxide dehydrogenase and, unexpectedly, four distinct [NiFe]-hydrogenases from subgroups not known to mediate aerobic H2 uptake. Quantitative proteomic analyses showed that A. brierleyi differentially produced these enzymes in response to electron donor and acceptor availability. A previously unidentified group 1 [NiFe]-hydrogenase, with a unique genetic arrangement, is constitutively expressed and upregulated during stationary phase and aerobic hydrogenotrophic growth. Another archaeon, Metallosphaera sedula, was also found to oxidize atmospheric H2. These results suggest that trace gas oxidation is a common trait of aerobic archaea, which likely plays a role in their survival and niche expansion, including during dispersal through temperate environments. These findings also demonstrate that atmospheric H2 consumption is a cross-domain phenomenon, suggesting an ancient origin of this trait, and identify previously unknown microbial and enzymatic sinks of atmospheric H2 and CO.
Project description:Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by monocultures of thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. Here, by applying omics, Raman microspectroscopy and stable isotope labeling, we investigated the effect of oxygen on the metabolism of Candidatus Thiosymbion oneisti. Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation, organic carbon assimilation and polyhydroxyalkanoate (PHA) biosynthesis, as well as nitrogen fixation and urea utilization were upregulated in oxic conditions. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand its deleterious effects, and fewer symbionts were detected to divide. Based on this first global physiological study of an uncultured chemosynthetic ectosymbiont, we propose that, in anoxic sediment, its proliferation is powered by anaerobic sulfur oxidation coupled to denitrification, whereas in upper layers it makes use of aerobic respiration to facilitate assimilation of carbon and nitrogen, and to survive oxidative stress. The ectosymbiont’s versatile metabolism is thus well-adapted to exploiting a highly changeable environment.
Project description:Diatoms played an essential role in marine primary productivity. Polysaccharide chrysolaminarin and neutral lipid, mainly TAG, were necessary carbon fixation in diatom Phaeodactylum tricornutum. Our study speculated on the metabolism pathway of chrysolaminarin, fatty acid, fatty acid β-oxidation and TAG. Transcriptional levels coordinated with carbon fixation metabolism pathway were conjoint analysis in this study.
Project description:Investigating the role of carbon monoxide and a CO sensor protein CooA in the physiology of Desulfovibrio vulgaris Hildenborough using whole genome expression analysis Comparison of whole genome expression changes in the wild type and a strain deleted for CooA (DVU2097) in the presence and absence of carbon monoxide