Project description:This SuperSeries is composed of the following subset Series: GSE35746: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [tiling arrays] GSE35821: Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling [TSS-Seq] Refer to individual Series
Project description:pBIC-1a is a IncFIIk-IncFI blaKPC-2-producing plasmid. Transcriptomic analysis was performed to dive deeper into the biology of this prototypical successful plasmid. The transcriptional landscape of pBIC-1a was assessed without antibiotic, and differential analysis after imipenem exposure was performed on E. coli TOP10(pBIC-1a) whole transcriptome.
Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:Comparative genomic hybridization between Escherichia coli strains to determine core and pan genome content of clinical and environmental isolates
Project description:Conjugative plasmids are the main vehicle for the horizontal spread of antimicrobial resistance (AMR). Although AMR plasmids provide advantages to their hosts under antibiotic pressure, they can also disrupt the cell’s regulatory network, impacting the fitness of their hosts. Despite the importance of plasmid-bacteria interactions on the evolution of AMR, the effects of plasmid carriage on host physiology has remained underexplored, and most studies have focused on model bacteria and plasmids that lack clinical relevance. Here, we analyzed the transcriptional response of 11 clinical enterobacterial strains (2 Escherichia coli, 1 Citrobacter freundii and 8 Klebsiella spp.) and the laboratory-adapted E. coli MG1655 to carriage of pOXA-48, one of the most widely spread carbapenem-resistance plasmids. Our analyses revealed that pOXA-48 produces variable responses on their hosts, but commonly affects processes related to metabolism, transport, response to stimulus, cellular organization and motility. More notably, the presence of pOXA-48 caused an increase in the expression of a small chromosomal operon of unknown function in Klebsiella spp. and C. freundii, which is not present in E. coli. Phylogenetic analysis suggested that this operon has been horizontally mobilized across different Proteobacteria species. We demonstrate that a pOXA-48-encoded LysR transcriptional regulator controls the expression of the operon in Klebsiella spp. and C. freundii. In summary, our results highlight a crosstalk between pOXA-48 and the chromosome of its natural hosts.
Project description:Comparative genomic hybridization between Escherichia coli strains to determine core and pan genome content of clinical and environmental isolates Two color experiment, Escherichia coli Sakai (reference), clinical and environmental Escherichia coli strains (testers): At least two replicates including a single dye swap for each reference-tester comparison
Project description:The dpiA and dpiB genes of Escherichia coli, which are orthologs of genes that regulate citrate uptake and utilization in Klebsiella pneumoniae, comprise a two-component signal transduction system that can modulate the replication of and destabilize the inheritance of pSC101 and certain other plasmids. Here we show that perturbed replication and inheritance result from binding of the effector protein DpiA to A+T-rich replication origin sequences that resemble those in the K. pneumoniae promoter region targeted by the DpiA ortholog, CitB. Consistent with its ability to bind to A+T-rich origin sequences, overproduction of DpiA induced the SOS response in E. coli, suggesting that chromosomal DNA replication is affected. Bacteria that overexpressed DpiA showed an increased amount of DNA per cell and increased cell size-both also characteristic of the SOS response. Concurrent overexpression of the DNA replication initiation protein, DnaA, or the DNA helicase, DnaB-both of which act at A+T-rich replication origin sequences in the E. coli chromosome and DpiA-targeted plasmids-reversed SOS induction as well as plasmid destabilization by DpiA. Our finding that physical and functional interactions between DpiA and sites of replication initiation modulate DNA replication and plasmid inheritance suggests a mechanism by which environmental stimuli transmitted by these gene products can regulate chromosomal and plasmid dynamics.
Project description:The dpiA and dpiB genes of Escherichia coli, which are orthologs of genes that regulate citrate uptake and utilization in Klebsiella pneumoniae, comprise a two-component signal transduction system that can modulate the replication of and destabilize the inheritance of pSC101 and certain other plasmids. Here we show that perturbed replication and inheritance result from binding of the effector protein DpiA to A+T-rich replication origin sequences that resemble those in the K. pneumoniae promoter region targeted by the DpiA ortholog, CitB. Consistent with its ability to bind to A+T-rich origin sequences, overproduction of DpiA induced the SOS response in E. coli, suggesting that chromosomal DNA replication is affected. Bacteria that overexpressed DpiA showed an increased amount of DNA per cell and increased cell size-both also characteristic of the SOS response. Concurrent overexpression of the DNA replication initiation protein, DnaA, or the DNA helicase, DnaB-both of which act at A+T-rich replication origin sequences in the E. coli chromosome and DpiA-targeted plasmids-reversed SOS induction as well as plasmid destabilization by DpiA. Our finding that physical and functional interactions between DpiA and sites of replication initiation modulate DNA replication and plasmid inheritance suggests a mechanism by which environmental stimuli transmitted by these gene products can regulate chromosomal and plasmid dynamics. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed
Project description:Plasmid diversity among genetically related Klebsiella pneumoniae blaKPC-2 and blaKPC-3 isolates collected in the Dutch national surveillance
Project description:The dpiA and dpiB genes of Escherichia coli, which are orthologs of genes that regulate citrate uptake and utilization in Klebsiella pneumoniae, comprise a two-component signal transduction system that can modulate the replication of and destabilize the inheritance of pSC101 and certain other plasmids. Here we show that perturbed replication and inheritance result from binding of the effector protein DpiA to A+T-rich replication origin sequences that resemble those in the K. pneumoniae promoter region targeted by the DpiA ortholog, CitB. Consistent with its ability to bind to A+T-rich origin sequences, overproduction of DpiA induced the SOS response in E. coli, suggesting that chromosomal DNA replication is affected. Bacteria that overexpressed DpiA showed an increased amount of DNA per cell and increased cell size-both also characteristic of the SOS response. Concurrent overexpression of the DNA replication initiation protein, DnaA, or the DNA helicase, DnaB-both of which act at A+T-rich replication origin sequences in the E. coli chromosome and DpiA-targeted plasmids-reversed SOS induction as well as plasmid destabilization by DpiA. Our finding that physical and functional interactions between DpiA and sites of replication initiation modulate DNA replication and plasmid inheritance suggests a mechanism by which environmental stimuli transmitted by these gene products can regulate chromosomal and plasmid dynamics. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Keywords: Logical Set