Project description:State-of-the-art algorithms for m6A detection and quantification via nanopore direct RNA sequencing have been continuously developed, little is known about their capacities and limitations, which makes a comprehensive assessment in urgent need. Therefore, we performed comprehensive benchmarking of 10 computational tools relying on current-based and base-calling “errors” strategies for m6A detection by nanopore sequencing.
Project description:N6-methyladenosine (m6A) has been increasingly recognized as a new and important regulator of gene expression. To date, transcriptome-wide m6A detection primarily relies on well-established methods using next-generation sequencing (NGS) platform. However, direct RNA sequencing (DRS) using the Oxford Nanopore Technologies (ONT) platform has recently emerged as a promising alternative method to study m6A. While multiple computational tools are being developed to facilitate the direct detection of nucleotide modifications, little is known about the capabilities and limitations of these tools. Here, we systematically compare ten tools used for mapping m6A from ONT DRS data. We find that most tools present a trade-off between precision and recall, and integrating results from multiple tools greatly improve performance. Using a negative control could improve precision by subtracting certain intrinsic bias. We also observed variation in detection capabilities and quantitative information among motifs, and identified sequencing depth and m6A stoichiometry as potential factors affecting performance. Our study provides insight into the computational tools currently used for mapping m6A based on ONT DRS data and highlights the potential for further improving these tools, which may serve as the basis for future research.
Project description:Non-invasive prenatal testing (NIPT) is a powerful screening method for fetal aneuploidy detection, relying on laboratory and computational analysis of cell-free DNA. Although several published computational NIPT analysis tools are available, no comprehensive and direct accuracy evaluations of these tools is published. Here, we evaluate and determine the precision of five commonly used computational NIPT aneuploidy analysis tools, considering diverse sequencing depth (coverage), arbitrary sequencing read placement, and fetal DNA fraction on clinically validated NIPT samples.
Project description:To investigate the potential mechanisms by which m6A contributes to ALS disease degeneration, we utilized a direct RNA sequencing platform, allowing for the identification of the m6A modification sites at single-nucleotide resolution. With the croreference of the ALS risk genes and transcriptomic RNA-seq data in ALS, we could further indntify the m6A-dependent potential genes and pathways in ALS.
Project description:N6-methyladenosine (m6A) is the most abundant internal eukaryotic mRNA modification, and is involved in the regulation of various biological processes. Direct Nanopore sequencing of native RNA (dRNA-seq) emerged as a leading approach for its identification. Several software were published for m6A detection and there is a strong need for independent studies benchmarking their performance on data from different species, and against various reference datasets. Moreover, a computational workflow is needed to streamline the execution of tools whose installation and execution remains complicated. We developed NanOlympicsMod, a Nextflow pipeline exploiting containerized technology for comparing 14 tools for m6A detection on dRNA-seq data. NanOlympicsMod was tested on dRNA-seq data generated from in vitro (un)modified synthetic oligos. The m6A hits returned by each tool were compared to the m6A position known by design of the oligos. In addition, NanOlympicsMod was used on dRNA-seq datasets from wild-type and m6A-depleted yeast, mouse and human, and each tool's hits were compared to reference m6A sets generated by leading orthogonal methods. The performance of the tools markedly differed across datasets, and methods adopting different approaches showed different preferences in terms of precision and recall. Changing the stringency cut-offs allowed for tuning the precision-recall trade-off towards user preferences. Finally, we determined that precision and recall of tools are markedly influenced by sequencing depth, and that additional sequencing would likely reveal additional m6A sites. Thanks to the possibility of including novel tools, NanOlympicsMod will streamline the benchmarking of m6A detection tools on dRNA-seq data, improving future RNA modification characterization.