Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
Project description:This data is a case study done in the context of developing methods for assessing the taxonomic composition of microbial communities using metaproteomics. For this study with analyzed phototrophic biomats from two Soda Lakes in the Canadian Rocky Mountains using metaproteomics. For protein identification we generated a metagenome from which we predicted and annotated the protein sequences used to analyze the metaproteomes. The database is available in this PRIDE submission. Lake1 refers to Goodenough Lake (GEM, 51°19'47.64"N 121°38'28.90"W) and Lake2 referes to Last Chance Lake (LCM, 51°19'39.3" N 121°37'59.3"W).
Project description:The goal of the Canadian Prostate Cancer Genome Network (CPC-GENE) is to use genomic data to predict treatment failure for intermediate risk prostate cancers so that we can provide better treatment pathways
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:To study the soil mcirobial functional communities and the nutrient cycles couplings changes after exposure to different contaminant