Project description:In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production
Project description:We performed ribosome profiling which is the deep-sequencing of mRNA fragments protected by translating ribosome for two Streptomyces species through different growth phases to provide the translatome data
Project description:We identified genome-wide binding regions of NdgR in Streptomyces coelicolor using chromatin immunoprecipitation sequencing (ChIP-seq). We constructed 6×myc-tagged NdgR strain using homologous recombination with myc-tagging vector. Analysis of the sequencing data aligned to Streptomyces coelicolor genome database (NC_003888).
Project description:Two component sensor-response regulator systems (TCSs) are very common in the genomes of the Streptomyces species that have been fully sequenced to date. It has been suggested that this large number is an evolutionary response to the variable environment that Streptomyces encounter in soil. Notwithstanding this, TCSs are also more common in the sequenced genomes of other Actinomycetales when these are compared to the genomes of most other eubacteria. In this study, we have used DNA/DNA genome microarray analysis to compare fourteen Streptomyces species and one closely related genus to Streptomyces coelicolor in order to identify a core group of such systems. This core group is compared to the syntenous and non-syntenous TCSs present in the genome sequences of other Actinomycetales in order to separate the systems into those present in Actinomycetales in general, the Streptomyces specific systems and the species specific systems. Horizontal transfer does not seem to play a very important role in the evolution of the TCS complement analyzed in this study. However, cognate pairs do not necessarily seem to evolve at the same pace, which may indicate the evolutionary responses to environmental variation may be reflected differently in sequence changes within the two components of the TCSs. The overall analysis allowed subclassification of the orphan TCSs and the TCS cognate pairs and identification of possible targets for further study using gene knockouts, gene overexpression, reporter genes and yeast two hybrid analysis.
Project description:This study compared the genome of Streptomyces rimosus rimosus against that of Streptomyces coelicolor. It also compared 4 strains with changes in oxytetracycline production and derived from G7, the type strain, against G7. Keywords: Comparative genomic hybridization
Project description:Chitin is the second most abundant biopolymer present in soils and is utilized by antibiotic-producing Streptomyces species. Its monomer, N-acetylglucosamine (NAG), regulates the developmental program of the model organism Streptomyces coelicolor. NAG blocks differentiation when growing on rich medium whilst it promotes development on poor culture media. We report here the negative effect of NAG on tacrolimus (FK506) production in Streptomyces tsukubaensis NRRL 18488 growing on a defined rich medium. Using microarrays technology, we found that GlcNAc represses the transcription of fkbN, encoding the main transcriptional activator of the tacrolimus biosynthetic cluster, and of ppt1, encoding a phosphopantheteinyltransferase involved in tacrolimus biosynthesis. On the contrary, NAG stimulated transcription of genes related to amino acid and nucleotide biosynthesis, DNA replication, RNA translation, glycolysis, pyruvate metabolism, and key gene members of the PHO regulon. The results obtained support those previously reported for S. coelicolor, but some important differences were observed
Project description:We have integrated nucleotide resolution genome-scale measurements of the transcriptome and translatome of the Streptomyces coelicolor A3(2), the model antibiotic-producing actinomycete. Our systematic study determined 3,473 transcription start sites, leading to discovery of a high proportion (~21%) of leaderless mRNAs and 230 non-coding RNAs; this enabled deduction of promoter architecture on a genome-scale. Ribosome profiling analysis revealed that the translation efficiency was negatively correlated for secondary metabolic genes. These results provide novel fundamental insights into translational regulation of secondary metabolism that enables rational synthetic biology approaches to awaken such âsilentâ secondary metabolic pathways. Profiles of primary transcripts, whole transcripts, and ribosome protected fragments (RPFs) of Streptomyces coelicolor were generated by deep sequencing using Illumina Miseq.
Project description:Genome-wide expression analysis of 6 batch cultivations of actinorhodin-producing wild type and recombinant strain of Streptomyces coelicolor
Project description:The whiH gene is required for the differentiation of aerial hyphae into spores in Streptomyces species. It is a predicted member of the GntR family of transcription factors and has been shown to bind specifically to a sequence in its own promoter. This ChIP-Seq experiment was carried out to determine all the binding sites whiH binds to in the genome of Streptomyces venezuelae. A whiH deletion strain was made and a FLAG tagged whiH protein was expressed in it from a genome-integrated plasmid. Then anti-FLAG antibodies were used for chromatin immunoprecipitation followed by high throughput sequencing. The wild type Streptomyces venezuelae strain (ATCC 10712) was used as a negative control. For both the FLAG-WhiH strain and the WT strain, non-immunoprecipitated (total) DNA was also sequenced to arrive at a background enrichment which could be subtracted from the enrichment in the immunoprecipated sample.