Project description:Gene duplications can facilitate adaptation and may lead to interpopulation divergence, causing reproductive isolation. We used whole-genome resequencing data from 34 butterflies to detect duplications in two Heliconius species, Heliconius cydno and Heliconius melpomene. Taking advantage of three distinctive signals of duplication in short-read sequencing data, we identified 744 duplicated loci in H. cydno and H. melpomene and evaluated the accuracy of our approach using single-molecule sequencing. We have found that duplications overlap genes significantly less than expected at random in H. melpomene, consistent with the action of background selection against duplicates in functional regions of the genome. Duplicate loci that are highly differentiated between H. melpomene and H. cydno map to four different chromosomes. Four duplications were identified with a strong signal of divergent selection, including an odorant binding protein and another in close proximity with a known wing colour pattern locus that differs between the two species.
Project description:We use RNAseq data to perform differential gene expression to identify genes controlling structural colouration in two co-mimetic species of Heliconius butterfly - Heliconius erato and Heliconius melpomene. We use comparisons between iridescent and non-iridescent subspecies of Helcionius erato (H. e. cyrbia and H. e. demophoon, respectively) and Helcionius melpomene (H. m. cythera and H. m. rosina, respectively) at two separate developmental stages, 50% and 70% of development. In addition, in the iridescent subspecies of both H. erato and H. melpomene, we compared the iridescent wing regions (forewing and hindwing combined) to the non-iridescent androconial wing region using differential gene expression.
Project description:We use RNAseq data to perform differential gene expression analysis to identify genes controlling structural colouration in two co-mimetic species of Heliconius butterfly - Heliconius erato and Heliconius melpomene. We use comparisons between iridescent and non-iridescent subspecies of Helcionius erato (H. e. cyrbia and H. e. demophoon, respectively) and Helcionius melpomene (H. m. cythera and H. m. rosina, respectively) at two separate developmental stages, 50% and 70% of development. In addition, in the iridescent subspecies of both H. erato and H. melpomene, we compared the iridescent wing regions (forewing and hindwing combined) to the non-iridescent androconial wing (anterior hindwing) region using differential gene expression.