Project description:This SuperSeries is composed of the following subset Series: GSE35487: Expression data from human with IgA nephropathy (IgAN) [HG-U133A] GSE35488: Expression data from human with IgA nephropathy (IgAN) [HG-U133A_ENTREZG_10] Refer to individual Series
Project description:The current study makes use of NanoString targeted technology to profile urinary exosomal miRNAs from IgA nephropathy affected patients and corresponding healthy controls. Circulatory biomarkers were detected for IgA nephropathy from Indian cohort which can be made used for the diagnostic therapy. 14 miRNAs were detected to be related to the disregulation in miRNome of IgA nephropathy patients using lasso feature selection method, out of which multiple miRNAs like hsa.mir.146b.3p, hsa.mir.599 and many more was resulted with high AUROC values >=0.9 efficient in differentiating between healthy controls and IgA nephropathy condition. These markers can be use further in the diagnosis and treatment of IgAN.
Project description:We report the expression of microRNAs in renal biopsies from patients with IgA nephropathy (progressive form and non progressive form), membranous and thin membrane nephropathies
Project description:Specific molecular biomarkers were detected in kidney biopsy of IgA nephropathy characterizing active (E and C) and chronic (T) renal lesions compared with other non-IgA glomerulonephritis and living donors
Project description:Previous studies revealed the abnormal lymphocytes subsets in IgA nephropathy (IgAN). Recently, emerging studies indicate that microRNA could influence the balance of T helper differentiation and function. Here we explore the underlying mechanism regarding how miRNA regulated lymphocytes subsets in IgAN, focused on T helper cell polarization.
Project description:The comprehensive analysis of kidney biopsy specimen demonstrated different gene expression profile, potential pathologic ligand-receptor crosstalk, signaling pathways in human IgAN. These results offer new insight into pathogenesis and identify new therapeutic targets for patients with IgA nephropathy.
Project description:IgA nephropathy represents the most prevalent chronic nephrosis worldwide. However, pathogenesis about IgA deposition and end-stage renal failure is still not well defined. Using single-cell RNA-seq, we identified the mesangial membrane receptor for IgA, which collaborates with increased extracellular matrix proteins and protease inhibitor to facilitate IgA deposition. Meanwhile, cell-cell interaction analysis revealed increased communications between mesangium and other cell types, uncovering how morbidity inside glomerulus spreads to whole kidney, which results in the genetic changes of kidney resident immune cells. Prominent interaction decreasing in intercalated cells leads to the discovery of a transitional cell type, which exhibited significant EMT and fibrosis features. Our work comprehensively characterized the pathological mesangial signatures, highlighting the step-by-step pathogenic process of IgA nephropathy from mesangium to epithelium.