Project description:The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, whereas tumors that are driven by SMARCB1-deficiency and tumors that represent previously misclassified adenoid cystic carcinomas are highly aggressive. Our findings have the potential to dramatically improve the diagnostic classification of sinonasal tumors and will fundamentally change the current perception of SNUCs.
Project description:The histopathological diagnosis of sinonasal tumors is challenging as it encompasses a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we show that a machine learning algorithm based on DNA methylation is able to classify sinonasal tumors with clinical-grade reliability. We further show that tumors with SNUC morphology are not as undifferentiated as their current terminology suggests, but can be assigned to four molecular classes defined by distinct epigenic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SWI/SNF chromatin remodeling complex mutations and overall favorable clinical course, highly aggressive tumors that are driven by SMARCB1-deficiency and tumors that represent previously misclassified adenoid-cystic carcinomas. Our findings have the potential to dramatically improve the diagnostic of challenging sinonasal tumors and could fundamentally change the current perception of SNUCs.
Project description:This dataset includes raw label-free mass spectrometry proteomics data of different sinonasal tumor entities as well as normal sinonasal tissue. 72 samples were processed on a Q Exactive HF-X instrument coupled to an easy nanoLC 1200 system using one microgram of peptides and an 110 minutes gradient.
Project description:The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent previously misclassified adenoid cystic carcinomas. The repository includes the raw mass spectrometry-based proteomics data
Project description:The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent previously misclassified adenoid cystic carcinomas. This repository includes the results from DNA sequencing and mass spectrometry-based proteomics.