Project description:Understanding the biogeographical patterns and underlying drivers of microbial functional diversity is essential for anticipating climate change impacts on ecosystem functioning worldwide. However, this matter remains scarcely addressed in freshwater ecosystems. Using the high-throughput gene array GeoChip 4.0, we show that functional gene alpha diversity and compositon differ across mountains, alpha diversity declines towards high elevations and compositional turnover increases with larger elevational distances. Both continental- and mountain-scale patterns were primarily driven by climatic variables.
Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.