Project description:Abstract Mutations in the gene encoding nucleophosmin (NPM1) carry prognostic value for patients with acute myeloid leukemia (AML). Various techniques are currently being used to detect these mutations in routine molecular diagnostics. Incorporation of accurate NPM1 mutation detection on a gene expression platform would enable simultaneous detection with various other expression biomarkers. Here we present an array based mutation detection using custom probes for NPM1 WT mRNA and NPM1 type A, B, and D mutant mRNA. This method was 100% accurate on a training cohort of 505 newly diagnosed unselected AML cases. Validation on an independent cohort of 143 normal karyotype AML cases revealed no false negative results, and one false positive (sensitivity 100.0%, and specificity 98.7%). Based on this, we conclude that this method provides a reliable method for NPM1 mutation detection. The method can be applied to other genes/mutations as long as the mutant alleles are sufficiently high expressed. Validation cohort of 143 AML cases analyzed using the AMLprofiler
Project description:Increased expression levels of miR-181 family members have been shown to be associated with favorable outcome in patients with cytogenetically normal acute myeloid leukemia. Here we show that increased expression of miR-181a and miR-181b is also significantly (P < .05; Cox regression) associated with favorable overall survival in cytogenetically abnormal AML (CA-AML) patients. We further show that up-regulation of a gene signature composed of 4 potential miR-181 targets (including HOXA7, HOXA9, HOXA11, and PBX3), associated with down-regulation of miR-181 family members, is an independent predictor of adverse overall survival on multivariable testing in analysis of 183 CA-AML patients. The independent prognostic impact of this 4-homeobox-gene signature was confirmed in a validation set of 271 CA-AML patients. Furthermore, our in vitro and in vivo studies indicated that ectopic expression of miR-181b significantly promoted apoptosis and inhibited viability/proliferation of leukemic cells and delayed leukemogenesis; such effects could be reversed by forced expression of PBX3. Thus, the up-regulation of the 4 homeobox genes resulting from the down-regulation of miR-181 family members probably contribute to the poor prognosis of patients with nonfavorable CA-AML. Restoring expression of miR-181b and/or targeting the HOXA/PBX3 pathways may provide new strategies to improve survival substantially. In addition, this data set has also been used to identify a common prognostic gene signature in human AML (Li Z. et al., unpublished). 93 human AML samples bearing various cytogenetic and molecular abnormalities are used to identify miR-181 target genes and a common prognostic gene signature.
Project description:Patients with cytogenetically normal acute myeloid leukemia (CN-AML) show heterogeneous treatment outcomes. We used gene expression profiling to develop a gene signature that predicts overall survival (OS) in CN-AML. Based on data from 163 patients treated in the German AMLCG 1999 trial and analyzed on oligonucleotide microarrays, we used supervised principal component analysis to identify 86 probe sets (representing 66 different genes) which correlated with OS, and defined a prognostic score based on this signature. When applied to an independent cohort of 79 CN-AML patients, this continuous score remained a significant predictor for OS (hazard ratio [HR], 1.85; P=0.002), EFS (HR, 1.73; P=0.001), and RFS (HR, 1.76; P=0.025). It kept its prognostic value in multivariate analyses adjusting for age, FLT3 ITD and NPM1 status. In a validation cohort of 64 CN-AML patients treated on CALGB study 9621, the score also predicted OS (HR, 4.11; P<0.001), EFS (HR, 2.90; P<0.001), and RFS (HR, 3.14, P<0.001) and retained its significance in a multivariate model for OS. In summary, we present a novel gene expression signature that offers additional prognostic information for patients with CN-AML. Keywords: clinical outcome
Project description:Increased expression levels of miR-181 family members have been shown to be associated with favorable outcome in patients with cytogenetically normal acute myeloid leukemia. Here we show that increased expression of miR-181a and miR-181b is also significantly (P < .05; Cox regression) associated with favorable overall survival in cytogenetically abnormal AML (CA-AML) patients. We further show that up-regulation of a gene signature composed of 4 potential miR-181 targets (including HOXA7, HOXA9, HOXA11, and PBX3), associated with down-regulation of miR-181 family members, is an independent predictor of adverse overall survival on multivariable testing in analysis of 183 CA-AML patients. The independent prognostic impact of this 4-homeobox-gene signature was confirmed in a validation set of 271 CA-AML patients. Furthermore, our in vitro and in vivo studies indicated that ectopic expression of miR-181b significantly promoted apoptosis and inhibited viability/proliferation of leukemic cells and delayed leukemogenesis; such effects could be reversed by forced expression of PBX3. Thus, the up-regulation of the 4 homeobox genes resulting from the down-regulation of miR-181 family members probably contribute to the poor prognosis of patients with nonfavorable CA-AML. Restoring expression of miR-181b and/or targeting the HOXA/PBX3 pathways may provide new strategies to improve survival substantially. In addition, this data set has also been used to identify a common prognostic gene signature in human AML (Li Z. et al., unpublished).
Project description:Ovarian cancer is the leading cause of death in gynecological diseases, and has been considered as one of the most fatal cancers due to lack of reliable detection strategy in the early stage. Therefore the capability to detect the morbidity initiation with an sensitive and effective approach is one of the most desirable goals for curing ovarian cancer. In this study, we used microarray technology for salivary mRNA biomarkers discovery, and evaluated the performance and translational utilities of discovered markers from a clinical study using an independent sample cohort . We used microarrays to profile and compare the gene expressions between ovairan cancer patient and matched controls, and identified seven down-regulated genes after the validation study. To find salivary transcriptomic biomarkers for ovarian cancer, salivary transcriptomes in 11 ovarian cancer patients and 11 matched controls were profiled using Affymetrix HG-U133-Plus-2.0 array, and followed by t-test and fold-change analyses. The biomarker candidates selected from the microarray results were subjected to clinical validation using an independent sample cohort by RT-qPCR. The prediction power of biomarkers was analyzed by logistic regression approach
Project description:Increased expression levels of miR-181 family members have been shown to be associated with favorable outcome in patients with cytogenetically normal acute myeloid leukemia. Here we show that increased expression of miR-181a and miR-181b is also significantly (P < .05; Cox regression) associated with favorable overall survival in cytogenetically abnormal AML (CA-AML) patients. We further show that up-regulation of a gene signature composed of 4 potential miR-181 targets (including HOXA7, HOXA9, HOXA11, and PBX3), associated with down-regulation of miR-181 family members, is an independent predictor of adverse overall survival on multivariable testing in analysis of 183 CA-AML patients. The independent prognostic impact of this 4-homeobox-gene signature was confirmed in a validation set of 271 CA-AML patients. Furthermore, our in vitro and in vivo studies indicated that ectopic expression of miR-181b significantly promoted apoptosis and inhibited viability/proliferation of leukemic cells and delayed leukemogenesis; such effects could be reversed by forced expression of PBX3. Thus, the up-regulation of the 4 homeobox genes resulting from the down-regulation of miR-181 family members probably contribute to the poor prognosis of patients with nonfavorable CA-AML. Restoring expression of miR-181b and/or targeting the HOXA/PBX3 pathways may provide new strategies to improve survival substantially. In addition, this data set has been used to identify a common prognostic gene signature (Li Z. et al. unpublished). 65 human AML samples bearing various cytogenetic and molecular abnormalities are used to identify miR-181 target genes and a common prognostic gene signature.
Project description:We report a kidney cancer tissue-based prognostic biomarker encompassing 15 genes (15G score) to classify patients into low versus high risk for recurrence after curative nephrectomy. The 15G score was independently associated with disease free survival adjusting for clinicopathologic variables as well as existing clinical risk calculators or nomograms. By improving risk stratification of patients with ccRCC, the 15G score has the capacity to facilitate selection of biopsy confirmed small renal cancers (T1a) for treatment versus surveillance; inform intensity and duration of surveillance after curative nephrectomy; and to potentially facilitate patient selection for adjuvant systemic therapy. We retrospectively identified 110 patients who underwent radical nephrectomy for ccRCC (discovery cohort). Patients who recurred were matched based on grade/stage to patients without recurrence. Capture whole transcriptome sequencing was performed on RNA isolated from archival tissue using the Illumina platform. We developed a gene-expression signature to predict recurrence/disease-free survival (DFS) using a 15-fold lasso and elastic-net regularized linear Cox model. We derived the 31-gene cell cycle progression (mxCCP) score using RNAseq data for each patient. Kaplan-Meier (KM) curves and multivariable Cox proportional hazard testing were used to validate the independent prognostic impact of the gene-expression signature on DFS, disease specific survival (DSS) and overall survival (OS) in two validation datasets (combined n=761).