Project description:Yeast-like symbiotes (YLS), harbored in the abdomen fat-body cells of the rice brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), are vital to the growth and reproduction of their host. It is feasible to manipulate BPH infestation on rice by inhibiting YLS using fungicide. In this study, the fungicide propiconazole was injected into the hemolymph of BPH thorax via microinjection to investigate its effect on YLS, especially the dominant species, Hypomyces chrysospermus, and their host BPH. Propiconazole markedly reduced the total number of YLS and H. chrysospermus in BPH hemolymph and fat body, thereby leading to an obvious higher mortality and lower fecundity of BPH than the negative control (PBS, phosphate buffer solution). After microinjecting propiconazole, the survival rate of BPH nymphs at the 5th instar was significantly lower than that obtained after PBS treatment. Eight days after propiconazole microinjection, the BPH survival rate dropped to 40%, only half of BPH survival rate treated with PBS microinjection. For female adults (1-day-old), there were significant differences in the survival rates between BPHs treated with propiconazole and those treated with PBS at days 5-8. The fecundity of BPH decreased significantly by microinjecting propiconazole and averaged only 229 eggs per female, which was 20% less than that of the negative control. Furthermore, we reared BPH on the susceptible variety TN1 sprayed with propiconazole to prove the feasibility manipulating field occurrence of BPH by inhibiting YLS using fungicides. The number of YLS and H. chrysospermus in BPH obviously declined. Subsequently, the survival rate and fecundity of BPH significantly decreased after feeding on rice treated with propiconazole. Meanwhile, the propiconazole residue was detected in the hemolymph and gut of BPH by HPLC analysis within 1 day of feeding. Inhibiting YLS using fungicides was a novel and effective way to control BPH infestation.
Project description:Plant-insect interactions constitute a complex of system, whereby plants synthesize toxic compounds as the main defense strategy to combat herbivore assault, and insects deploy detoxification systems to cope with toxic plant compounds. Cytochrom P450s are among the main detoxification enzymes employed by insects to combat the chemical defenses of host plants. In this study, we used Nilaparvata lugens (BPH) to constitute an ideal system for studying plant-insect interactions. By feeding BPHs with artificial diets containing ethanol extracts, we show that biotype Y BPHs have a greater ability to metabolize exogenous substrates than biotype 1 BPHs. NlCPR knockdown inhibited the ability of BPHs to feed on YHY15. qRT-PCR was used to screen genes in the P450 family, and upregulation of CYP4C61, CYP6AX1, and CYP6AY1 induced by YHY15 was investigated. When the three P450 genes were knocked down, only CYP4C61 dsRNA treatment was inhibited the ability of BPHs to feed on YHY15. These results indicate that BPH P450 enzymes are a key factor in the physiological functions of BPH when feeding on BPH-resistant rice.
Project description:BackgroundThe brown planthopper (BPH) Nilaparvata lugens (Stål) is one of the most serious insect pests of rice in Asia. However, little is known about the mechanisms responsible for the development, wing dimorphism and sex difference in this species. Genomic information for BPH is currently unavailable, and, therefore, transcriptome and expression profiling data for this species are needed as an important resource to better understand the biological mechanisms of BPH.Methodology/principal findingsIn this study, we performed de novo transcriptome assembly and gene expression analysis using short-read sequencing technology (Illumina) combined with a tag-based digital gene expression (DGE) system. The transcriptome analysis assembles the gene information for different developmental stages, sexes and wing forms of BPH. In addition, we constructed six DGE libraries: eggs, second instar nymphs, fifth instar nymphs, brachypterous female adults, macropterous female adults and macropterous male adults. Illumina sequencing revealed 85,526 unigenes, including 13,102 clusters and 72,424 singletons. Transcriptome sequences larger than 350 bp were subjected to Gene Orthology (GO) and KEGG Orthology (KO) annotations. To analyze the DGE profiling, we mainly compared the gene expression variations between eggs and second instar nymphs; second and fifth instar nymphs; fifth instar nymphs and three types of adults; brachypterous and macropterous female adults as well as macropterous female and male adults. Thousands of genes showed significantly different expression levels based on the various comparisons. And we randomly selected some genes to confirm their altered expression levels by quantitative real-time PCR (qRT-PCR).Conclusions/significanceThe obtained BPH transcriptome and DGE profiling data provide comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms from various physiological aspects including development, wing dimorphism and sex difference in BPH.