Project description:Metaproteome analysis of a forest soil and a potting soil. Different protein extraction methods were compared to investigate protein extraction efficiency and compatibility with sample downstream processing.
Project description:Soil microbial community is a complex blackbox that requires a multi-conceptual approach (Hultman et al., 2015; Bastida et al., 2016). Most methods focus on evaluating total microbial community and fail to determine its active fraction (Blagodatskaya & Kuzyakov 2013). This issue has ecological consequences since the behavior of the active community is more important (or even essential) and can be different to that of the total community. The sensitivity of the active microbial community can be considered as a biological mechanism that regulates the functional responses of soil against direct (i.e. forest management) and indirect (i.e. climate change) human-induced alterations. Indeed, it has been highglihted that the diversity of the active community (analyzed by metaproteomics) is more connected to soil functionality than the that of the total community (analyzed by 16S rRNA gene and ITS sequencing) (Bastida et al., 2016). Recently, the increasing application of soil metaproteomics is providing unprecedented, in-depth characterisation of the composition and functionality of active microbial communities and overall, allowing deeper insights into terrestrial microbial ecology (Chourey et al., 2012; Bastida et al., 2015, 2016; Keiblinger et al., 2016). Here, we predict the responsiveness of the soil microbial community to forest management in a climate change scenario. Particularly, we aim: i) to evaluate the impacts of 6-years of induced drought on the diversity, biomass and activity of the microbial community in a semiarid forest ecocosystem; and ii) to discriminate if forest management (thinning) influences the resistance of the microbial community against induced drought. Furthermore, we aim to ascertain if the functional diversity of each phylum is a trait that can be used to predict changes in microbial abundance and ecosystem functioning.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:This study began with 72 male 4-week-old BALB/c mice. The mice were split evenly into one of four cohorts: Control, River, Pine, and Road. The control mice were raised with standard corn cob bedding whereas the remaining mice were raised with clean bedding amended with 300 mL of one of three different types of soil. The soil exposure continued throughout the experiment, with 300 mL of new soil added with bi-weekly cage changes. The soils used to amend the cage bedding were previously characterized as having high (Pine), medium (River), and low (Road) diversity. The River and Pine soil were collected from Duke Forest and the Road soil was collected adjacent to Highway 15-501 in Chapel Hill, North Carolina. All mice were given a standard diet and the cages were distributed reverse osmosis treated water through a centralized Lixit® system that was fed to each cage in parallel. After 32 days of standard rearing with amended soils, the mice were exposed via oropharyngeal aspiration to either live influenza A (PR8) virus or heat inactivated (HI) virus.
Project description:It has long been recognized that species occupy a specific ecological niche within their ecosystem. The ecological niche is defined as the number of conditions and resources that limit species distribution. Within their ecological niche, species do not exist in a single physiological state but in a number of states we call the Natural Operating Range. In this paper we link ecological niche theory to physiological ecology by measuring gene expression levels of collembolans exposed to various natural conditions. The soil-dwelling collembolan Folsomia candida was exposed to 26 natural soils with different soil characteristics (soil type, land use, practice, etc). The animals were exposed for two days and gene expression levels were measured. The main factor found to regulate gene expression was the soil type (sand or clay), in which 18.5% of the measured genes were differentially expressed. Gene Ontology analysis showed animals exposed to sandy soils experience general stress, affecting cell homeostasis and replication. Multivariate analysis linking soil chemical data to gene expression data revealed that soil fertility influences gene expression. Land-use and practice had less influence on gene expression; only forest soils showed a different expression pattern. A variation in gene expression variation analysis showed overall low variance in gene expression. The large difference in response to soil type was caused by the soil physicochemical properties where F. candida experiences clay soils and sandy soils as very different from each other. This collembolan prefers fertile soils with high organic matter content, as soil fertility was found to correlate with gene expression and animals exposed to sandy soils (which, in general, have lower organic matter content) experience more general stress. Finally, we conclude that there is no such thing as a fixed physiological state for animals in their ecological niche and the boundary between the ecological niche and a stressed state depends on the genes/pathways investigated.
Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.