ABSTRACT: Astragalus mongholicus polysaccharides ameliorate hepatic lipid accumulation and inflammation as well as modulate gut microbiota in NAFLD rats
Project description:The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is associated with abnormalities of liver lipid metabolism, especially with the accumulation of saturated fatty acids (FA). On the contrary, a diet enriched with n-3 polyunsaturated FA (n-3-PUFA) has been reported to ameliorate the progression of NAFLD. The aim of our study was to investigate the impact of dietary n-3-PUFA enrichment on the development of NAFLD and liver lipidome. Mice were fed for 6 weeks either high-fat methionine choline-deficient diet (MCD) or standard chow (two groups fed MCD, two control groups, both with or without n-3-PUFA). Genome-wide transcriptome analysis of liver tissue was performed and revealed differences in liver mRNA transcriptomes after MCD as well as n-3-PUFA administration.
Project description:Purpose: While various functions of peripheral serotonin are known, the direct role of serotonin in regulating hepatic lipid metabolism in vivo is not well understood. We studied whether serotonin directly acts on liver to regulate lipid metabolism. Methods: Methods: 12 weeks aged liver-specific Htr2a KO (Albumin-Cre+/-; Htr2aflox/flox, herein named Htr2a LKO) mice and wildtype (WT) littermates were fed a high-fat diet (HFD, 60% fat calories) for 8 weeks. Results: Hepatic lipid droplet accumulation, NAFLD activity score, and hepatic triglyceride levels were dramatically reduced in HFD-fed Htr2a LKO mice compared to WT littermates. Conclusions: Gut-derived serotonin is a direct regulator of hepatic lipid metabolism via a gut TPH1-liver HTR2A endocrine axis. And shows promise as a novel drug target to ameliorate NAFLD with minimal systemic metabolic effects.
Project description:Astragalus polysaccharides (APS), as one of the main effective components of astragalus, have been reported to regulate the processes of inflammation, metabolism, and carcinogenes. We used microarrays to detect the different expression of mRNA in PC3 cells upon APS treatment.
Project description:Background & Aims: Non-alcoholic fatty liver disease (NALFLD)-associated changes in gut microbiota are important drivers of disease progression toward fibrosis. Therefore, reversing microbiota alterations could ameliorate NAFLD progression. Oat beta-glucan, a non-digestible polysaccharides, has shown promising therapeutic effects on hyperlipidemia associated with NAFLD, but its impact on gut microbiota and most importantly NAFLD fibrosis remains unknown. Methods: We performed detailed metabolic phenotyping including body composition, glucose tolerance, and lipid metabolism as well as comprehensive characterization of the gut-liver axis in a western-style diet (WSD)-induced model of NAFLD and assessed the effect of a beta-glucan intervention on early and advanced liver disease. Gut microbiota was modulated using broad-spectrum antibiotic (Abx) treatment. Results: Oat beta-glucan supplementation did not affect WSD-induced body weight gain, glucose intolerance, and the metabolic phenotype remained largely unaffected. Interestingly, oat beta-glucan dampened NAFLD inflammation, associated with significantly reduced monocyte-derived macrophages (MoMFs) infiltration, fibroinflammatory gene expression, and strongly reduced fibrosis development. Mechanistically, this protective effect was not mediated by changes in bile acid composition or signaling, but was dependent on gut microbiota and was lost upon Abx treatment. Specifically, oat beta-glucan partially reversed unfavorable changes in gut microbiota, resulting in an expansion of protective taxa, including Ruminococcus, and Lactobacillus followed by reduced translocation of TLR ligands. Conclusions: Our findings identify oat beta-glucan as a highly efficacious food supplement that dampens inflammation and fibrosis development in diet-induced NAFLD. These results, along with its favorable dietary profile, suggest that it may be a cost-effective and well-tolerated approach to preventing NAFLD progression and should be assessed in clinical studies.