Project description:The opaque and transparent colonies frequency of rr11 mutants has been changed siginificantly compared with that of WT. The molecular mechanism of the regulation of RR11 on phase variation will help understand the penumococcal adaptation since RR11 belongs to a typical Two-component system. But the regulon of RR11 hasn't been identified until now. The RNA sequcing will help identify the regulons of RR11 in ST556.
Project description:This SuperSeries is composed of the following subset Series: GSE31815: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + Glucose at MID-log growth phase GSE31816: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + GLucose at transition-phase of growth (TS) GSE31817: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + Galactose at MID-log growth phase GSE31818: ccpA mutant compared to D39 wild-type in Streptococcus pneumoniae in CDM + galactose at transition-phase of growth (TS) Refer to individual Series
Project description:Galactose promotes pneumococcal biofilms in vivo 15 mRNA profiles of Streptococcus pneumoniae samples that were grown under different conditions were generated using deep sequencing.
Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction.