Project description:The great tit is a widely studied passerine bird species in ecology that, in the past decades, has provided important insights into speciation, phenology, behavior and microevolution. After completion of the great tit genome sequence, a customized high density 650k SNP array was developed enabling more detailed genomic studies in this species.
2018-02-19 | GSE105131 | GEO
Project description:Urban great tit genomics
| PRJEB44069 | ENA
Project description:Blue tit populations genomics
| PRJNA630135 | ENA
Project description:Population genomics of the willow tit species complex
Project description:A major concern in common disease epigenomics is distinguishing causal from consequential epigenetic variation. One means of addressing this issue is to identify the temporal origins of epigenetic variants via longitudinal analyses. However, prospective birth-cohort studies are expensive and time-consuming. Here we report DNA methylomics of archived Guthrie cards for the retrospective longitudinal analyses of in utero-derived DNA methylation variation. We first validate two methodologies for generating comprehensive DNA methylomes from Guthrie cards. Then, using an integrated epigenomic/genomic analysis of Guthrie cards and follow-up samplings, we identify inter-individual DNA methylation variation that is present both at birth and three years later. These findings suggest that disease-relevant epigenetic variation could be detected at birth i.e. before overt clinical disease. Guthrie card methylomics offers a potentially powerful and cost-effective strategy for studying the dynamics of inter-individual epigenomic variation in a range of common human diseases. Bisulphite converted DNA was sequenced
Project description:Whole blood methylomics, transcriptomics and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis (PESA) study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification.
Project description:Whole blood methylomics, transcriptomics and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis (PESA) study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification.