Project description:Because antibiotics have been widely used to prevent severe losses due to infectious fishery diseases, the liberal application and overuse of antibiotics has led to the spread and evolution of bacterial resistance, food safety hazards, and environmental issues. The use of some antibiotics, including florfenicol and enrofloxacin, is allowed in aquaculture in China. Accordingly, to better address the concerns and questions associated with the impact of administered enrofloxacin and florfenicol to grass carp, here we investigated the immune response, bacterial diversity, and transcriptome of the intestine of C. idella treated with these oral antibiotics. The aim of this study was to provide an in-depth evaluation of the antibiotic-induced patterns and dynamics of the microbiota grass carp and the potential mechanism involved.
Project description:Bactericidal antibiotics are powerful drugs because they not only inhibit essential bacterial functions, but convert them into toxic processes. Many bacteria are remarkably tolerant against antibiotics, due to inducible damage repair responses. How these responses promote whole population tolerance in important human pathogens is poorly understood. The two-component system VxrAB of the diarrheal pathogen Vibrio cholerae, a model system for tolerance against cell wall damaging (e.g., beta-lactam) antibiotics, is required for high-level beta-lactam tolerance. Here, we report the mechanism of VxrAB-mediated survival. We find that -lactam antibiotics inappropriately induce the Fur-regulated iron starvation response, causing an increase in intracellular free iron and colateral oxidative damage. VxrAB reduces antibiotic-induced toxic influx of Fe by downregulating iron importers and induces cell wall synthesis functions to counteract cell wall damage. Our results highlight the complex responses elicited by antibiotics and suggest that the ability to counteract diverse stresses promotes high-level antibiotic tolerance.
2019-07-30 | GSE135009 | GEO
Project description:Campus Antibiotics Virome Study
Project description:Although modern clinical practices such as cesarean sections and perinatal antibiotics have improved infant survival, treatment with broad-spectrum antibiotics alters intestinal microbiota and causes dysbiosis. Infants exposed to perinatal antibiotics have an increased likelihood of life-threatening infections, including pneumonia. Here, we investigated how the gut microbiota sculpt pulmonary immune responses, promoting recovery and resolution of infection in newborn rhesus macaques. Early-life antibiotic exposure interrupted the maturation of intestinal commensal bacteria and disrupted the developmental trajectory of the pulmonary immune system, as assessed by single-cell proteomic and transcriptomic analyses. Early-life antibiotic exposure rendered newborn macaques more susceptible to bacterial pneumonia, concurrent with increases in neutrophil senescence and hyperinflammation, broad inflammatory cytokine signaling, and macrophage dysfunction. This pathogenic reprogramming of pulmonary immunity was further reflected by a hyperinflammatory signature in all pulmonary immune cell subsets coupled with a global loss of tissue-protective, homeostatic pathways in the lungs of dysbiotic newborns. Fecal microbiota transfer was associated with partial correction of the broad immune maladaptations and protection against severe pneumonia. These data demonstrate the importance of intestinal microbiota in programming pulmonary immunity and support the idea that gut microbiota promote the balance between pathways driving tissue repair and inflammatory responses associated with clinical recovery from infection in infants. Our results highlight a potential role for microbial transfer for immune support in these at-risk infants.
Project description:Insect gut microbiota plays important roles in acquiring nutrition, preventing pathogens infection, immune responses, and communicating with the environment. Gut microbiota can be affected by some external factors such as foods, temperature, and antibiotics. Spodoptera frugiperda (Lepidoptera: Noctuidae) is an important destructive pest of grain crops all over the world. The function of gut microbiota in S. frugiperda remains to be investigated. In this study, we fed the S. frugiperda with the antibiotic mixture (penicillin, gentamicin, rifampicin, and streptomycin) to perturb the gut microbiota, and further examined the effect of dysbiosis in gut microbiota on the gene expression of S. frugiperda by RNA sequencing. We found the composition and diversity of the gut bacterial community were changed in S. frugiperda after antibiotics treatmen, and the expression of genes related to energy and metabolic process were affected after antibiotics exposure in S. frugiperda. Our work will help understand the role of gut microbiota in insects.
Project description:Commensal bacteria have been shown to influence the reactivity of immune cells in the gut and in other organs. This study aims to assess the impact of microbiota on transcription signatures in lung stroma cells. Samples were generated from mice that were either left on plain water, on water with antibiotics, or on water with antibiotics followed by faecal transplant to reverse the antibiotics effect. CD45 negative cells were MACS-purified from the lung, and RNA seq was performed on samples.
Project description:The inappropriate use of antibiotics is a severe public health problem worldwide, contributing to the emergence of multidrug-resistant (MDR) bacteria. To explore the possible impacts of the inappropriate use of antibiotics on the immune system, we use Klebsiella pneumoniae (K. pneumoniae) infection as an example and show that imipenem increases the mortality of mice infected by MDR K. pneumoniae. Further studies demonstrate that imipenem enhances the secretion of outer membrane vesicles (OMVs) with significantly elevated presentation of GroEL, which promotes the phagocytosis of OMVs by macrophages that depends on the interaction between GroEL and its receptor LOX-1. OMVs cause the pyroptosis of macrophages and the release of proinflammatory cytokines, which contribute to exacerbated inflammatory responses. We propose that the inappropriate use of antibiotics in the cases of infection by MDR bacteria such as K. pneumoniae might cause damaging inflammatory responses, which underlines the pernicious effects of inappropriate use of antibiotic.
Project description:The diverse bacterial communities that colonize the gastrointestinal tract play an essential role in maintaining immune homeostasis through the production of critical metabolites such as short chain fatty acids (SCFA), and this can be disrupted by antibiotic use. However, few studies have addressed the effects of specific antibiotics longitudinally on the microbiome and immunity. We evaluated the effects of four specific antibiotics; enrofloxacin, cephalexin, paromomycin, and clindamycin; in healthy female rhesus macaques. All antibiotics disrupted the microbiome, including reduced abundances of fermentative bacteria and increased abundances of potentially pathogenic bacteria, including Enterobacteriaceae in stool, and decreased Helicobacteraceae in the colon. This was associated with decreased SCFAs, indicating altered bacterial metabolism. Importantly, antibiotic use also substantially altered local immune responses, including increased neutrophils and Th17 cells in the colon. Furthermore, we observed increased soluble-CD14 in plasma, indicating microbial translocation. These data provide a longitudinal evaluation of antibiotic-induced changes to the composition and function of colonic bacterial communities, associated with specific alterations in mucosal and systemic immunity.