Project description:Bacterial nutrition is a key aspect of host-pathogen interaction and bacteria must adapt to use nutrients available in the host. Lipid droplets-derived fatty acids are considered the major intracellular carbon source for Mycobacterium tuberculosis (Mtb), an intracellular pathogen causing Tuberculosis disease. However, many other (and more soluble) substrates are available in vivo and may represent alternative carbon sources. Lactate and pyruvate are rather abundant in human cells and fluids and represent two possible candidates. In this work, we employed a “multi-omics” approach (Transposon Directed Insertion Site Sequencing (TraDIS), RNA-seq transcriptomics, proteomics and stable isotopic labelling coupled with mass spectrometry-based metabolomics) and classic microbial physiology to study Mtb metabolism of lactate and pyruvate. We discovered that Mtb is well adapted to use lactate and pyruvate as sole carbon sources and that it requires gluconeogenesis, Krebs cycle, GABA shunt, glyoxylate shunt and methylcitrate cycle for their metabolism. These latter are traditionally associated with fatty acid metabolism and unexpectedly, we found that methylcitrate cycle operates in reverse. This latter discovery changes the role of this pathway making it a direct route for the biosynthesis of propionyl-CoA, the essential precursor for the biosynthesis of odd-chain fatty acids, abundantly present in Mtb cell envelope.
Project description:Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long Read Transposon Insertion-site Sequencing). This experiment data contains sequence files generated using Nanopore and Illumina platforms. Biotin1308.fastq.gz and Biotin2508.fastq.gz are fastq files generated from nanopore technology. Rep1-Tn.fastq.gz and Rep1-Tn.fastq.gz are fastq files generated using Illumina platform. In this study, we have compared the efficiency of two methods in identification of transposon insertion sites.
Project description:Somatic transposon mutagenesis in mice is an efficient strategy to investigate the genetic mechanisms of tumorigenesis. The identification of tumor driving transposon insertions traditionally requires the generation of large tumor cohorts to obtain information about common insertion sites. Tumor driving insertions are also characterized by their clonal expansion in tumor tissue, a phenomenon that is facilitated by the slow and evolving transformation process of transposon mutagenesis. We describe here an improved approach for the detection of tumor driving insertions that assesses the clonal expansion of insertions by quantifying the relative proportion of sequence reads obtained in individual tumors. To this end, we have developed a protocol for insertion site sequencing that utilizes acoustic shearing of tumor DNA and Illumina sequencing. We analyzed various solid tumors generated by PiggyBac mutagenesis and for each tumor >10^6 reads corresponding to >10^4 insertion sites were obtained. In each tumor, 9 to 25 insertions stood out by their enriched sequence read frequencies when compared to frequencies obtained from tail DNA controls. These enriched insertions are potential clonally expanded tumor driving insertions, and thus identify candidate cancer genes. The candidate cancer genes of our study comprised many established cancer genes, but also novel candidate genes such as Mastermind-like1 (Mamld1) and Diacylglycerolkinase delta (Dgkd). We show that clonal expansion analysis by high-throughput sequencing is a robust approach for the identification of candidate cancer genes in insertional mutagenesis screens on the level of individual tumors. Solid tumors in mice were generated by somatic transposon mutagenesis with a PiggyBac transposon system. Insertion sites of transposons in 11 tumors and 6 non-cancerous tail controls were determined by Illumina high-throughput sequencing. Insertions were determined both on 5' and 3' sides of the transposon (PB5 and PB3, respectively). Quantitative analysis of read numbers revealed enrichment of certain insertions in tumors, but not in controls, and these enriched insertions identify candidate cancer genes.
Project description:Transcription factors direct gene expression, and so there is much interest in mapping their genome-wide binding locations. M-BM- Current methods do not allow for the multiplexed analysis of TF binding, and this limits their throughput. We describe a novel method for determining the genomic target genes of multiple transcription factors simultaneously. DNA-binding proteins are endowed with the ability to direct transposon insertions into the genome near to where they bind. The transposon becomes a M-bM-^@M-^\Calling CardM-bM-^@M-^] marking the visit of the DNA-binding protein to that location. A unique sequence M-bM-^@M-^\barcodeM-bM-^@M-^] in the transposon matches it to the DNA-binding protein that directed its insertion. The sequences of the DNA flanking the transposon (which reveal where in the genome the transposon landed) and the barcode within the transposon (which identifies the TF that put it there) are determined by massively-parallel DNA sequencing. To demonstrate the methodM-bM-^@M-^Ys feasibility, we determined the genomic targets of eight transcription factors in a single experiment. The Calling Card method promises to significantly reduce the cost and labor needed to determine the genomic targets of many transcription factors in different environmental conditions and genetic backgrounds. These data contain Ty5 insertion sites mapped by an Illumina GAII analyzer in the S. cerevisiae genome for the background strain without any Sir4 present (1 run), in strains expressing Sir4-tagged copies of three well-characterized TFs: Gal4, Leu3, and Gcn4 (1 run each), and a multiplex of eight Sir4-tagged TFs pooled in a single experiment (2 biological replicates), and insertions from the Thi2-Sir4 fusion expressed from its native locus in two conditions (1 run each). The format of each insertions file is [chromosome number] [position of genomic base] [direction of insertion] [number of reads at that position]. Raw sequencing data comes in two varieties. Paired-end data contains a 5 bp barcode at the beginning of read #2. Single-end data contains a 2 bp barcode on the beggining of read #1.
Project description:Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28oC. When the library of mutants was subsequently cultured at 37oC we identified 19 genes that were essential at 37oC but not at 28oC, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance.
Project description:A whole genome screen was used to assay every gene of Escherichia coli strain BW25113 to identify genes involved in susceptibility to the monobactam (beta-lactam) antibiotic aztreonam. The methodology has been called TraDIS-Xpress, and is a version of TraDIS or Tn-seq. A transposon mutant library consisting of several hundred thousand mutants was constructed using a Tn5-derived transposon incorporating an inducible outward transcribing promoter. All the mutants were grown in LB broth cultures supplemented with aztreonam at 2 x, 1 x, 0.5 x and 0.25 x MIC with induction of the transposon promoter using 0.2 mM IPTG or 1 mM IPTG or without induction. Following growth, mutants with increased susceptibility show reduced numbers and those with reduced susceptibility show increased numbers. Each condition was performed in duplicate. The methodology enable genes to be assayed by insertional inactivation or by changes in expression. Expression changes result from altered transcription from upstream transposon insertions transcribing into the gene, or downstream insertions transcribing into the gene in the reverse direction leading to RNA interference through the generation of reverse and complementary RNA. Thus, essential genes into which transposon insertions are not tolerated may be assayed also by changes in numbers of upstream or downstream insertion mutants. Changes to high throughput sequencing protocols permit the generation of nucleotide sequence reads from the known transposon sequences into the surrounding insertion site for all the mutants in the mixture simultaneously. Matching the sequence of the reads to the genome nucleotide sequence of E. coli BW25113 then allows the precise locations of all the transposon insertion sites of all the mutants to be mapped simultaneously. The relative changes in mutants between control (without) and selective condition (with aztreonam) then indicates which genes are involved in susceptibility. The numbers of sequence reads that match is reflected by the number of mutants, and so the degree of susceptibility can also be estimated.
Project description:Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic E. coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 UPEC genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide (LPS) biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary NMR-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of multiple omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway.
Project description:Generation of a Tn5 transposon library in Haemophilus parasuis and analysis by Transposon-Directed Insertion-Site Sequencing (TraDIS)
Project description:Whole genome sequencing of the Arabidopsis thaliana dot5-1 transposon insertion line described in Petricka et al 2008 The Plant Journal 56(2): 251-263.