Project description:a2e_heterosis - cgh_colvscvi_wg - Arabidopsis thaliana accessions (Col-0, C24 and Cvi) and their hybrid were used to investigate the dynamics of the epigenome after intraspecific hybridization between - Comparative genome hybridization between Arabidopsis thaliana accessions Col-0 and CVi.
Project description:a2e_heterosis - cgh_colvsc24_wg - Arabidopsis thaliana accessions (Col-0, C24 and Cvi) and their hybrid were used to investigate the dynamics of the epigenome after intraspecific hybridization between - Comparative genome hybridization between Arabidopsis thaliana accessions Col-0 and C24.
Project description:a2e_heterosis - cgh_colvsc24_chr4 - Arabidopsis thaliana accessions (Col-0, C24 and Cvi) and their hybrid were used to investigate the dynamics of the epigenome after intraspecific hybridization between - Comparative genome hybridization between Arabidopsis thaliana accessions Col-0 and C24 Keywords: cgh,chip-chip
Project description:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. The presented model is a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. The Petri net formalism was used to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs were applied. Based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism, the core metabolism of Arabidopsis thaliana was formulated. Each reaction (transition) is experimentally proven. The complete Petri net model consists of 134 metabolites, represented by places, and 243 reactions, represented by transitions. Places and transitions are connected via 572 edges.
Project description:Kinetic model of extended MEP pathway in Arabidopsis thaliana for cis-abienol production.
This model was used for determining total optimization potential (TOP) of cis-abienol production in Arabidopsis thaliana using Spacescanner (https://github.com/atiselsts/spacescanner). This model was used to make designs A, B and C. An optimization task in COPASI can be perfomed using this model by accesing COPASI/Tasks/Optimization. Parameters which will be changed during the optimization and the optimization constraints can be selected.
More description in
Total optimization potential (TOP) approach based constrained design of isoprene and cis-abienol production in A. thaliana,
Authors: Katrina D. Neiburga, Reinis Muiznieks, Darta M. Zake, Agris Pentjuss, Vitalijs Komasilovs, Johann Rohwer, Alain Tissier, Egils Stalidzans
Project description:Kinetic model of extended MEP pathway in Arabidopsis thaliana for isoprene.
This model was used for determining total optimization potential (TOP) of isoprene production in Arabidopsis thaliana using Spacescanner (https://github.com/atiselsts/spacescanner). This model was used to make designs D, E and F. An optimization task in COPASI can be perfomed using this model by accesing COPASI/Tasks/Optimization. Parameters which will be changed during the optimization and the optimization constraints can be selected.
More description in
Total optimization potential (TOP) approach based constrained design of isoprene and cis-abienol production in A. thaliana,
Authors: Katrina D. Neiburga, Reinis Muiznieks, Darta M. Zake, Agris Pentjuss, Vitalijs Komasilovs, Johann Rohwer, Alain Tissier, Egils Stalidzans