Project description:The goal of this study is to survey transcriptional machinery in intestinal stem cells from small and large intestine of mice. We established intestinal stem cell specific gene-regulatroy network to understand regional identity.
Project description:The goal of this study is to survey transcriptional machinery in intestinal stem cells from small and large intestine of mice. We established intestinal stem cell specific gene-regulatroy network to understand regional identity.
Project description:The goal of this study is to survey transcriptional machinery in intestinal stem cells from small and large intestine of mice. We established intestinal stem cell specific gene-regulatroy network to understand regional identity.
Project description:We previously identified Dclk1, a tuft cell marker, marks tumor stem cells (TSCs) in mouse intestinal tumors. In this study, we have identified IL17RB as a cell surface marker distinctively expressed by Dclk1+ tuft-like tumor cells in mouse intestinal tumors. Using this tuft cell marker, we compared and analyzed the transcriptome of Lgr5-tuft marker-, Lgr5+tuft marker-, Lgr5-tuft marker+, and Lgr5+tuft marker+ tumor cells. These analyses revealed that tuft-like tumor cells in the intestinal tumors comprise two distinct subsets: highly differentiated tuft-like tumor cells (Lgr5-tuft marker+ cells) and tuft-like tumor cells with TCS potential (Lgr5+tuft marker+ cells).
Project description:The intestinal epithelium is continuously regenerated by highly proliferative Lgr5+ intestinal stem cells (ISCs). The existence of a population of quiescent ISCs has been suggested yet its identity and features remain controversial. Here we describe that the expression of the RNA-binding protein Mex3a labels a subpopulation of Lgr5+ cells that divide less frequently and contribute to regenerate all intestinal lineages with slow kinetics. Single cell transcriptomic analysis revealed two classes of Lgr5-high cells, one of them defined by the Mex3a-expression program and by low levels of proliferation genes. Lineage tracing experiments show that large fraction of Mex3a+ cell population is continuously recalled into the rapidly dividing self-renewing ISC pool in homeostatic conditions. Chemotherapy and radiation target preferentially rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, which helps sustain the renewal of the intestinal epithelium during treatment.
Project description:Lgr5+ crypt base columnar cells, the operational intestinal stem cells (ISCs), are thought to be dispensable for small intestinal (SI) homeostasis. Using a novel Lgr5-2A-DTR (Diphtheria Toxin Receptor) model which ablates Lgr5+ cells with near-complete efficiency and retains endogenous levels of Lgr5 expression, we show that persistent depletion of Lgr5+ ISCs in fact compromises SI epithelial integrity and reduces epithelial turnover in vivo. In vitro, Lgr5-2A-DTR SI organoids are unable to establish or survive when Lgr5+ ISCs are continuously eliminated when DT is in the media. However, transient exposure to DT at the start of culture allows organoids to form, and the rate of outgrowth reduces with increasing length of DT presence. Our results indicate that intestinal homeostasis requires a constant pool of Lgr5+ ISCs, which is supplied by rapidly reprogrammed non-Lgr5+ crypt populations when pre-existing Lgr5+ ISCs are ablated.