Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared.
Project description:Wood maturation produces two distinct wood tissues: juvenile wood (JW) and mature wood (LW), which are the major cause of wood qaulity variation within a tree. We investigate transcriptome reorganization during wood maturation process in radiata pine using a newly developed 18k cDNA microarrays. Developing xylem tissues from nine sampled trees at 5- and 13-year-old each were randomly divided into three groups with three trees each. Total RNA samples extracted from three trees within a group were pooled at equal amount before using for microarray experiments. Using this pooling strategy three biological replicates were formed for each microarray experiment. Dye swap was applied in each biological replicate. Comparisons between JW and MW in spring (EW) and autumn (LW) were arranged in two separate microarray experiments: juvenile earlywood (JE) vs. mature earlywood (ME), juvenile latewood (JL) vs. mature latewood (ML)
Project description:Seasonal wood development results in two distinct wood types: earlywood (EW) and latewood (LW), which is the major cause of wood qaulity variation. We investigate transcriptome reorganization during seasonal wood development in radiata pine using a newly developed 18k cDNA microarrays. Three sampling trees each at juvenile (5 yrs), transition (9 yrs) and mature (14 yrs) ages (based on the wood rings at breast height) were selected from a plantation forest of radiata pine at Bondo, NSW , Australia (35º 16' 44.04 S, 148º 26' 54.66 E). The sampling trees at juvenile and mature ages were grown within 50 m distance and under similar environment. Two sampling trees at rotation age (30 yrs) were chosen at Yarralumla, ACT, Australia (35° 18' 27'' S, 149° 7' 27.9'' E).
Project description:Wood density is a foundamental quality trait for structural timber, bioenergy and pulp industries. We investigated genes differentially transcribed in radiate pine juvneile trees with distinct wood density using cDNA microarrays.
Project description:Wood density is a foundamental quality trait for structural timber, bioenergy and pulp industries. We investigated genes differentially transcribed in radiate pine juvneile trees with distinct wood density using cDNA microarrays. Radiata pine trees were selected from a progeny trial planted at Flynn, Australia. Based on the gravitical measurement of wood cores, 12 families with highest and lowest density each were selected, representing two groups of trees with contrasting wood density. One individual with higher or lower density were further sampled in each selected family. Developing xylem tissues of selected trees were sampled in autumn (April) when latewood (LW) was formed. The xylem tissues were scraped at breast height with a sharp chisel after the bark was removed. Wood cores of the sampled trees were further measured using SilviScan 2. Total RNA extracted from ten developing xylem tissues with confirmed distinct density in each tree group were pooled into two bulks (five trees each), and the two bulks of HD were compared with two LD bulks in the microarray experiment (named the bulk experiment). Six developing xylem tissues with the most distinct density from each tree group were further chosen. Six xylem tissues with HD were individually compared with bulked six xylem tissues with LD in the second microarray experiment (named individual experiment). These two different pooling strategies can partly minimize the genetic variation among different genotypes. Dye swaps were applied in each biological replicate.
Project description:Wood stiffness is the most important wood quality trait of forest trees for structural timber production. We investigated genes differentially transcribed in radiate pine trees with distinct wood stiffness using bulked segregant analysis (BSA) and cDNA microarrays. Transcript accumulation in earlywood (EW) and latewood (LW) of high (HS) and low stiffness (LS) trees in two progeny trials was compared. Radiata pine trees used for microarray experiment were selected from two progeny trials planted at Flynn and Kromelite, Australia. Based on the IML-based MOE measurement, five families with highest and lowest MOE each were selected from each trial, which represented two segregant populations with contrasting wood stiffness. Two individuals from each selected family were further sampled. Developing xylem tissues of selected trees in Flynn trial were sampled in spring (October) and autumn (April), representing earlywood (EW) and latewood (LW) of juvenile aged trees, respectively. Collection of xylem tissues from Kromelite trial was arranged in summer (late November) when latewood (LW) was formed. The xylem tissues were scraped at breast height with a sharp chisel after the bark was removed. In Flynn trial EW and LW tissues were collected from the same sampled trees on opposite sides of the trunk. Transcript accumulation was compared in trees with highest (HS) and lowest stiffness (LS) using xylem samples from Flynn collected in spring (EW) and autumn (LW), as well as Kromelite in summer (LW), respectively. Bulked segregant analysis (BSA) was used for the experiment design. Total RNA samples extracted from the five trees with HS were pooled at equal amount, and compared to the bulked five individuals with LS. This pooling strategy can partly minimize the genetic variation among different genotypes. Dye swaps were applied in each biological replicate.
Project description:Wood-decomposition in terrestrial ecosystems is a very important process with huge ecologic consequences. This decomposition process is a combination of biological respiration, leaching and fragmentation, mainly triggered by organismic activities. In order to gain a deeper insight into these microbial communities and their role in deadwood decay, we used metaproteomics. Metaproteomics is an important tool and offers the ability to characterize the protein complement of environmental microbiota at a given point in time. In this dataset, we provide data of an exemplary beech wood log and applied different extraction methods to provide the proteome profile of beech dead wood and their corresponding fungal-bacterial community.
Project description:The fungal response to compositional differences in softwood as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition.
Project description:affy_orleans_circad - circad_pop1 - Global transcriptome analysis of tension wood in poplar over a 24h period. Young differentiating xylem was harvested on the tension wood side of 6 month-old poplar trees grown in greenhouse conditions. The samples were harvested at 6 hour intervals throughout the day. The bioinformatic analysis will permit the identification of genes expressed in tension wood and that cycle with a nycthemeral oscillation pattern. Keywords: time course