Project description:Winged bean (WB), Psophocarpus tetragonolobus, is a tropical legume, the potential of which is not yet been understood. We found that a 5 week-oral administration of WB seed extract inhibited wrinkle formation induced by repeated tape stripping (TS), which is a model of lichenification in human chronic eczematous dermatitis. To elucidate mechanism of the effect of WB on this model, we applied microarray analysis.
Project description:Winged bean (WB), Psophocarpus tetragonolobus, is a tropical legume, the potential of which is not yet been understood. We found that a 5 week-oral administration of WB seed extract inhibited wrinkle formation induced by repeated tape stripping (TS), which is a model of lichenification in human chronic eczematous dermatitis. To elucidate mechanism of the effect of WB on this model, we applied microarray analysis. Skin barrier was disrupted by repeated application and removal (tape stripping; TS) of cellophane tape on the dorsal skin of the left side. This procedure was started after 1 week-administration of winged bean (WB) extract, and was conducted 3 times per week for 4 weeks. Dorsal skin samples from three experimental groups were used for microarray experiment. These groups were the non-TS (NT), TS, and TS with oral administration of WB extract (TS/WB). The DNA microarray experiment was performed using Affymetrix Mouse Genome 430 2.0 Array.
Project description:A sustainable supply of plant protein is critical for future generations and needs to be achieved while reducing green house gas emissions from agriculture and increasing agricultural resilience in the face of climate volatility. Agricultural diversification with more nutrient-rich and stress tolerant crops could provide the solution. However, this is often hampered by the limited availability of genomic resources and the lack of understanding of the genetic structure of breeding germplasm and the inheritance of important traits. One such crop with potential is winged bean (Psophocarpus tetragonolobus), a high seed protein tropical legume which has been termed 'the soybean for the tropics'. Here, we present a chromosome level winged bean genome assembly, an investigation of the genetic diversity of 130 worldwide accessions, together with two linked genetic maps and a trait QTL analysis (and expression studies) for regions of the genome with desirable ideotype traits for breeding, namely architecture, protein content and phytonutrients.
Project description:Winged bean, Psophocarpus tetragonolobus (L.) DC., is similar to soybean in yield and nutritional value but more viable in tropical conditions. Here, we strengthen genetic resources for this orphan crop by producing a de novo transcriptome assembly and annotation of two Sri Lankan accessions (denoted herein as CPP34 [PI 491423] and CPP37 [PI 639033]), developing simple sequence repeat (SSR) markers, and identifying single nucleotide polymorphisms (SNPs) between geographically separated genotypes. A combined assembly based on 804,757 reads from two accessions produced 16,115 contigs with an N50 of 889 bp, over 90% of which has significant sequence similarity to other legumes. Combining contigs with singletons produced 97,241 transcripts. We identified 12,956 SSRs, including 2,594 repeats for which primers were designed and 5,190 high-confidence SNPs between Sri Lankan and Nigerian genotypes. The transcriptomic data sets generated here provide new resources for gene discovery and marker development in this orphan crop, and will be vital for future plant breeding efforts. We also analyzed the soybean trypsin inhibitor (STI) gene family, important plant defense genes, in the context of related legumes and found evidence for radiation of the Kunitz trypsin inhibitor (KTI) gene family within winged bean.
Project description:Psophocarpus tetragonolobus (L.) DC. is a tropical legume with potential nutritional properties. In present study, the physical properties and proximate composition of the seeds were evaluated. Besides, the physico-chemical properties of fatty oil from fully mature seeds were also studied. The fatty oil compositions of immature, mature and fully mature seeds were evaluated by GC-FID, GC/MS and (1)H-NMR. The study revealed that, fatty oil from fully mature seeds contained high proportion of unsaturated fatty acids (75.5 %), whereas immature seeds contained higher percentage of saturated fatty acid (61.3 %). In addition, unsaponification matter (0.25 %) of fatty oil was identified as stigmasterol (66.4 %) and β-sitosterol (25.1 %). Total lipids of fully mature seeds were extracted and isolated as neutral, glyco- and phospholipids. Overall, the fatty oil of fully mature seeds was enriched with mono-unsaturated fatty acids (38.6 %) and poly-unsaturated fatty acids (36.9 %) without trans-fatty acids, thus meeting the edible oil standard.