Project description:Saccharomyces pastorianus is the yeast used to make lager beer; it is known to be an interspecific hybrid formed by the fusion between S. cerevisiae and S. bayanus genomes. This data set queries 17 S. pastorianus strains, collected at various times over the last 125 years from various breweries located in different geographical locations, which were obtained from CBS and DBVPG culture collections. The data in this set represent array-CGH experiments performed with these strains, using "2-species" custom Agilent arrays (the "2-species" arrays contain probes spaced every ~2 kb across the whole genomes of both S. cerevisiae and S. bayanus; the probes are unique and specific for each genome). The data set also contains 3 self-self hybridizations (S. cerevisiae + S. bayanus DNA mixed together in equimolar amounts, then labeled green or red in separate reactions, then hybridized to the "2-species" arrays) used for normalization in CGH-Miner analysis. A strain or line experiment design type assays differences between multiple strains, cultivars, serovars, isolates, lines from organisms of a single species.
Project description:We report the gene expression profile of two polypolid Saccharomyces pastorianus, lager yeast strains, the Group I strain CBS1538 and the Group II strain W34/70. Saccharomyces pastorianus is a hybrid of Saccharomuyces cerevisiaie and Saccharomyces eubayanus. We report that the gene expression patterns are correlated with the gene copy number of S. cerevisiae and S. eubayanus alleles.
Project description:During fermentation Saccharomyces yeast produces various aroma-active metabolites determining the different characteristics of aroma and taste in fermented beverages. Amino acid utilization by yeast during brewer´s wort fermentation is seen as linked to flavour profile. To better understand the relationship between the biosynthesis of aroma relevant metabolites and the importance of amino acids, DNA microarrays were performed for Saccharomyces cerevisiae strain S81 and Saccharomyces pastorianus var. carlsbergensis strain S23, respectively. Thereby, changes in transcription of genes were measured, which are associated with amino acid assimilation and its derived aroma-active compounds during fermentation.
Project description:We report the gene expression profile of two polypolid Saccharomyces pastorianus mutants obtained by random mutagenesis using radicicol. Mutants derived from the Group I strain CBS1538 and the Group II strain W34/70. Saccharomyces pastorianus is a hybrid of Saccharomuyces cerevisiaie and Saccharomyces eubayanus. We report changes in transcriptome of the mutants compared to their respective parental strain