Project description:Autophagy is a highly conserved self-digestion process, essential to maintain homeostasis and viability in response to nutrient starvation. Although the components of autophagy in the cytoplasm have been well-studied, molecular basis for the epigenetic regulation of autophagy is poorly understood. Here, we identify histone arginine methyltransferase CARM1 as a critical component of autophagy. We found that nutrient starvation increased CARM1 protein level and subsequently histone H3R17 dimethylation. Genome-wide analyses reveal that CARM1 exerts transcriptional coactivator function on autophagy-related genes and lysosomal genes through TFEB. Our findings demonstrate a previously unrecognized role of CARM1-dependent histone arginine methylation as a critical nuclear event of autophagy.
Project description:Coactivator associated arginine methyltransferase I (CARM1, also known as Protein aRginine MethylTransferase 4, or PRMT4) regulates gene expression by multiple mechanisms including methylation of histones and coactivation of steroid receptor transcription. Mice lacking CARM1 are smaller than their littermates, fail to breath, and die shortly after birth, demonstrating the critical role of CARM1 in development.We performed gene expression analysis to identify genes that are responsible for hyperproliferaion in CARM1 knockout lung. RNA extracted from murine lung at E18.5 with carm1 knockouts and wild type controls was hybridised to Affymetrix mouse430.2 GeneChips to identify differentially expressed genes in the disease state.