Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically.
Project description:An important lesson from the war on pathogenic bacteria has been the need to understand the physiological responses and evolution of natural microbial communities. Bacterial populations in the environment are generally forming biofilms subject to some level of phage predation. These multicellular communities are notoriously resistant to antimicrobials and, consequently, very difficult to eradicate. This has sparked the search for new therapeutic alternatives, including phage therapy. This study demonstrates that S. aureus biofilms formed in the presence of a non-lethal dose of phage phiIPLA-RODI exhibit a unique physiological state that could potentially benefit both the host and the predator. Thus, biofilms formed under phage pressure are thicker and have a greater DNA content. Also, the virus-infected biofilm displayed major transcriptional differences compared to an untreated control. Significantly, RNA-seq data revealed activation of the stringent response, which could slow down the advance of the bacteriophage within the biofilm. The end result would be an equilibrium that would help bacterial cells to withstand environmental challenges, while maintaining a reservoir of sensitive bacterial cells available to the phage upon reactivation of the dormant carrier population.
Project description:Biofilms are heterogeneous bacterial communities featured by high persister prevalence, responsible for antibiotic tolerance. However, the mechanisms underlying persister formation within biofilms remained ambiguous. Here, by developing and utilizing a ribosomal RNA depleted bacterial single-cell RNA-seq method, RiboD-mSPLiT, we resolved biofilm heterogeneity and discovered pdeI as a marker gene for persister subgroup within biofilms. Remarkably, our findings elucidated that PdeI upregulates cellular levels of c-di-GMP, which acts as an antitoxin to modulate the toxicity of toxin protein HipH. HipH localizes on nucleoid and functions as a potent DNase, inducing cells into a viable but non-culturable state. Conversely, c-di-GMP interacts with HipH, reducing its genotoxic effects and enabling cells to enter a persister state, resulting in drug tolerance. Importantly, by targeting this toxin-antitoxin system, we repressed drug tolerance in Uropathogenic Escherichia coli infections, offering promising therapeutic strategies against chronic and relapsing infections.
Project description:Disrupted interactions between host and intestinal bacteria are implicated in the development of colorectal cancer (CRC). However, the functional impacts of these inter-kingdom interactions remain poorly defined. To examine this interplay, we performed mouse and microbiota RNA-sequencing on colon tissue from germ-free (GF) and gnotobiotic ApcMin/+;Il10-/- mice associated with microbes from biofilm-positive human CRC tumor (BT) and biofilm-negative healthy (BX) tissues. The bacteria in BT mice differentially expressed >2,900 genes related to bacterial secretion, virulence and biofilms, but only affected 62 host genes. Importantly, the bacterial communities from BT mice were transmissible and carcinogenic when administered to a new GF ApcMin/+;Il10-/- cohort, maintaining a set of 13 bacterial genera. Our findings suggest complex interactions within bacterial communities affecting bacterial composition and CRC development.
Project description:Understanding the bacterial community structure, and their functional analysis for active bioremediation process is essential to design better and cost effective strategies. Microarray analysis enables us to simultaneously study the functional and phylogenetic markers of hundreds of microorganisms which are involved in active bioremediation process in an environment. We have previously described development of a hybrid 60-mer multibacterial microarray platform (BiodegPhyloChip) for profiling the bacterial communities and functional genes simultaneously in environments undergoing active bioremediation process (Pathak et al; Appl Microbiol Biotechnol,Vol. 90, 1739-1754). The present study involved profiling the status of bacterial communities and functional (biodegradation) genes using the developed 60-mer oligonucleotide microarray BiodegPhyloChip at five contaminated hotspots in the state of Gujarat, in western India. The expression pattern of functional genes (coding for key enzymes in active bioremediation process) at these sites was studied to understand the dynamics of biodegradation in the presence of diverse group of chemicals. The results indicated that the nature of pollutants and their abundance greatly influence the structure of bacterial communities and the extent of expression of genes involved in various biodegradation pathways. In addition, site specific factors also play a pivotal role to affect the microbial community structure as was evident from results of 16S rRNA gene profiling of the five contaminated sites, where the community structure varied from one site to another drastically. Agilent one-color CGH experiment and one-color Gene Expresssion expereiment,Organism: Genotypic designed Agilent-17159 Genotypic designed Agilent Multibacterial 8x15k Array , Labeling kits: Agilent Genomic DNA labeling Kit (Part Number: 5190-0453) and Agilent Quick Amp Kit PLUS (Part number: 5190-0442).
Project description:Biofilms are heterogeneous bacterial communities featured by high persister prevalence, responsible for antibiotic tolerance. However, the mechanisms underlying persister formation within biofilms remained ambiguous. Here, by developing and utilizing a ribosomal RNA depleted bacterial single-cell RNA-seq method, RiboD-mSPLiT, we resolved biofilm heterogeneity and discovered pdeI as a marker gene for persister subgroup within biofilms. Remarkably, our findings elucidated that PdeI upregulates cellular levels of c-di-GMP, which acts as an antitoxin to modulate the toxicity of toxin protein HipH. HipH localizes on nucleoid and functions as a potent DNase, inducing cells into a viable but non-culturable state. Conversely, c-di-GMP interacts with HipH, reducing its genotoxic effects and enabling cells to enter a persister state, resulting in drug tolerance. Importantly, by targeting this toxin-antitoxin system, we repressed drug tolerance in Uropathogenic Escherichia coli infections, offering promising therapeutic strategies against chronic and relapsing infections.
Project description:Biofilms are heterogeneous bacterial communities featured by high persister prevalence, responsible for antibiotic tolerance. However, the mechanisms underlying persister formation within biofilms remained ambiguous. Here, by developing and utilizing a ribosomal RNA depleted bacterial single-cell RNA-seq method, RiboD-mSPLiT, we resolved biofilm heterogeneity and discovered pdeI as a marker gene for persister subgroup within biofilms. Remarkably, our findings elucidated that PdeI upregulates cellular levels of c-di-GMP, which acts as an antitoxin to modulate the toxicity of toxin protein HipH. HipH localizes on nucleoid and functions as a potent DNase, inducing cells into a viable but non-culturable state. Conversely, c-di-GMP interacts with HipH, reducing its genotoxic effects and enabling cells to enter a persister state, resulting in drug tolerance. Importantly, by targeting this toxin-antitoxin system, we repressed drug tolerance in Uropathogenic Escherichia coli infections, offering promising therapeutic strategies against chronic and relapsing infections.
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. 18 samples; Triplicate PHB-enriched bacterial communities recovered from activated sludge were exposed to nanoparticle (TiO2 or Ag) or AgNO3 (as a silver control) or were not exposed to an nanoparticles (control) to determine if the naoparticles affected PHB production.
Project description:Background: While the luminal microbiome composition in the human cervicovaginal tract has been defined, the presence and impact of tissue-adherent ectocervical microbiota remain incompletely understood. Studies of luminal and tissue-associated bacteria in the gastrointestinal tract suggest that they may have distinct roles in health and disease. Here, we performed a multi-omics characterization of paired luminal and tissue samples collected from a clinically well-characterized cohort of Kenyan women. Results: We identified a tissue-adherent bacterial microbiome, with a higher alpha diversity than the luminal microbiome, in which dominant genera overall included Gardnerella and Lactobacillus, followed by Prevotella, Atopobium, and Sneathia. About half of the L. iners dominated luminal samples had a corresponding Gardnerella dominated tissue microbiome. Broadly, the tissue-adherent microbiome was associated with fewer differentially expressed host genes than the luminal microbiome. Gene set enrichment analysis revealed that L. crispatus-dominated tissue-adherent communities were associated with protein translation and antimicrobial activity, whereas a highly diverse microbiome was associated with epithelial remodeling and pro-inflammatory pathways. Communities dominated by L. iners and Gardnerella were associated with low host transcriptional activity. Tissue-adherent microbiomes dominated by Lactobacillus and Gardnerella correlated with host protein profiles associated with epithelial barrier stability, and with a more pro-inflammatory profile for the Gardnerella-dominated microbiome group. Tissue samples with a highly diverse composition had a protein profile representing cell proliferation and pro-inflammatory activity. Conclusion: We identified ectocervical tissue-adherent bacterial communities in all study participants. These communities were distinct from cervicovaginal luminal microbiota in a significant proportion of individuals. This difference could possibly explain that L. iners dominant luminal communities have a high probability of transitioning to high diverse bacterial communities including high abundance of Gardnerella. By performing integrative multi-omics analyses we further revealed that bacterial communities at both sites correlated with distinct host gene expression and protein levels. The tissue-adherent bacterial community is similar to vaginal biofilms that significantly impact women’s reproductive and sexual health.