Project description:Background: Farm exposures in early life reduce the risks for childhood allergic diseases and asthma. There is less information about how farm exposures relate to respiratory illnesses and mucosal immune development. Objective: We hypothesized that children raised in farm environments have a lower incidence of viral illnesses over the first two years of life than non-farm children. We also analyzed between farm exposures or respiratory illnesses were related to patterns of nasal cell gene expression. Methods: The Wisconsin Infant Study Cohort (WISC) birth cohort enrolled farm and non-farm pregnant women from central Wisconsin. Parents reported prenatal farm and other environmental exposures. Illness frequency and severity were assessed using illness diaries and periodic surveys. Nasopharyngeal cell gene expression at age two years was compared to farm exposure and respiratory illness history. Results: There was a higher rate of respiratory illnesses in the non-farm vs. farm group (rate ratio 0.82 [0.69,0.97], p=0.020), but no significant differences in wheezing illnesses. There was a stepwise reduction in rates of respiratory illnesses in children exposed at least weekly to 0, 1, or ≥2 animals (p=0.006). In analyzing nasal cell gene expression, farm exposures and preceding respiratory illnesses were positively related to gene signatures for mononuclear cells and innate and antimicrobial responses. Conclusions: Children exposed to farms and farm animals had lower rates of respiratory illnesses over the first two years of life. Both farm exposures and preceding respiratory illnesses were associated with increased innate immune responses, suggesting that these exposures stimulate mucosal immune responses to reduce subsequent illness frequency.
Project description:Vibrio parahaemolyticus is a Gram-negative bacterium commonly found in marine and estuarine environments. Acute hepatopancreatic necrosis disease (AHPND) caused by this bacterium is an ongoing problem among shrimp farming industries. V. parahaemolyticus proteins PirA and PirB have been determined to be major virulence factors that induce AHPND. In this study, Pacific white shrimp (Litopenaeus vannamei) were challenged with recombinant PirA and PirB by a reverse gavage method and then at 30 m, 1, 2, 4, and 6 h time points, the hepatopancreas of five individual shrimp were removed and placed into RNA later. We conducted RNA sequencing of the hepatopancreas samples from a no PirA/B control (n = 5) and PirA/B-treated shrimp at the different time intervals (n=5). We evaluated the different gene expression patterns between the time groups to the control with a focus on identifying differences in innate immune function.
Project description:Adult male grass shrimp were exposed for 96 hours to LC50 concentrations of either Fipronil, Endosulfan, or Cadmium, as well as a Carrier Control exposure. RNA was extracted from whole-body homogenates using the RNABee kit. Tags were clustered to identify tags diagnostic of the different exposures. Keywords: SAGE, Grass shrimp, ecotoxicogenomics