Project description:To determine which signalling pathways are affected by small RNAs (piRNAs, miRNAs) through target regulation in Glioblastoma Multiforme (GBM), we performed high-throughput next-generation sequencing in U87-MG GBM cell line. The RNA sequencing (RNA-Seq) of small RNAs and transcriptomes discovered both known and novel piRNAs and miRNAs as well other transcriptomes of protein-coding genes, lncRNAs and pseudogenes expressed in this GBM cell line. These small RNAs and target transcriptomes can be further investigated to decode novel molecular mechanisms underlying oncogenesis of this malignancy.
Project description:RNA editing is an important co/post-transcriptional molecular process able to modify RNAs by nucleotide insertions/deletions or substitutions. In human, the most common RNA editing event involves the deamination of adenosine (A) into inosine (I) through the adenosine deaminase acting on RNA proteins. Although A-to-I editing can occur in both coding and non-coding RNAs, recent findings, based on RNA-seq experiments, have clearly demonstrated that a large fraction of RNA editing events alter non-coding RNAs sequences including untranslated regions of mRNAs, introns, long non-coding RNAs (lncRNAs), and low molecular weight RNAs (tRNA, miRNAs, and others). An accurate detection of A-to-I events occurring in non-coding RNAs is of utmost importance to clarify yet unknown functional roles of RNA editing in the context of gene expression regulation and maintenance of cell homeostasis. In the last few years, massive transcriptome sequencing has been employed to identify putative RNA editing changes at genome scale. Despite several efforts, the computational prediction of A-to-I sites in complete eukaryotic genomes is yet a challenging task. We have recently developed a software package, called REDItools, in order to simplify the detection of RNA editing events from deep sequencing data. In the present work, we show the potential of our tools in recovering A-to-I candidates from RNA-Seq experiments as well as guidelines to improve the RNA editing detection in non-coding RNAs, with specific attention to the lncRNAs.
Project description:Long non-coding RNAs (LncRNAs) represent a novel class of RNAs with no functional protein-coding ability, yet it has become increasingly clear that interactions between lncRNAs with other molecules are responsible for important gene regulatory functions in various contexts. Given their relatively high expressions in the brain, lncRNAs are now thought to play important roles in normal brain development as well as diverse disease processes including gliomagenesis. Intriguingly, certain lncRNAs are closely associated with the initiation, differentiation, progression, recurrence and stem-like characteristics in glioma, and may therefore be exploited for the purposes of sub-classification, diagnosis and prognosis. LncRNAs may also serve as potential therapeutic targets as well as a novel biomarkers in the treatment of glioma. In this article, the functional aspects of lncRNAs, particularly within the central nervous system (CNS), will be briefly discussed, followed by highlights of the important roles of lncRNAs in mediating critical steps during glioma development. In addition, the key lncRNA players and their possible mechanistic pathways associated with gliomagenesis will be addressed.
Project description:Recently developed technologies have revealed that the genomes of many organisms produce transcripts that do not encode proteins. These are called non-coding RNAs. Long non-coding RNAs (lncRNAs) are important regulators of the expression of their target genes at the levels of transcription, translation, and degradation. Multiple studies have demonstrated a role for lncRNAs in various biological responses, including pathogenic infection. Upon pathogenic infection, the expression levels of lncRNAs are dynamically altered, suggesting that lncRNAs are involved in the host immune response or propagation of pathogens. In this review, we focused on host lncRNAs that are involved in pathogenic infection. Some host lncRNAs act as host defense molecules to prevent pathogenic proliferation, while others are utilized by the pathogen to enhance the propagation of pathogens.
Project description:Barrett's esophagus (BE) involves a metaplastic replacement of native esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved regions (UCRs) are a class non-coding sequences that are conserved in humans, mice and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles that are dysregulated in Barrett's mucosa transformation, microarray analysis was performed on a discovery set of 51 macro-dissected samples obtained from 14 long-segment BE patients. Results were validated in an independent series of esophageal biopsy/surgery specimens and in two murine models of Barrett's esophagus (i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to adenocarcinoma was each associated with specific and mutually exclusive T-UCR signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles were shared by human and murine lesions. This study is the first demonstration of a role for T-UCRs in the transformation of Barrett's mucosa.
Project description:CONTEXT:Long noncoding RNAs (lncRNAs) regulate pathological processes, yet their potential roles in papillary thyroid carcinoma (PTC) are poorly understood. OBJECTIVE:To profile transcriptionally dysregulated lncRNAs in PTC and identify lncRNAs associated with clinicopathological characteristics. DESIGN:We performed RNA sequencing of 12 paired PTC tumors and matched noncancerous tissues and correlated the expression of lncRNAs with clinical parameters. The 2 most significantly dysregulated lncRNAs were studied in an Ohio PTC cohort (n = 109) and in PTC data (n = 497) from The Cancer Genome Atlas. SETTING:A combination of laboratory-based studies and computational analysis using clinical data and samples and a publically available database. MAIN OUTCOME MEASURES:Correlation between expression values and clinical parameters. RESULTS:We identified 218 lncRNAs showing differential expression in PTC (fold change ? 2.0, P < .01). Significant correlation was observed between the expression of 2 lncRNAs (XLOC_051122 and XLOC_006074) and 1) lymph node metastasis (N stage) and 2) BRAF(V600E) mutation. Among patients with wild-type BRAF, the expression of these 2 lncRNAs showed significantly higher levels in the patients with lymph node metastasis. In silico analysis of these lncRNAs pinpointed cell movement and cellular growth and proliferation as targeted functions. CONCLUSIONS:Comprehensive expression screening identified 2 novel lncRNAs associated with risk factors of adverse prognosis in PTC patients. These lncRNAs may be novel players in PTC carcinogenesis.