Project description:We did bulk RNA sequencing in newborn cystic fibrosis (CF) and non-CF pig kidney. We compared kidney gene expression profiling between non-CF and CF pigs. RNA sequencing results showed that there is not significant difference between non-CF and CF in terms of gene expression, suggesting that CFTR knockout does not affect kidney development in newborn pigs.
Project description:A small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygous CF patients and non-CF controls. We used the custom designed Affymetrix HsAirwaya520108F Arrays to compare gene expression in 5 CF and 5 non CF nasal epithelial cell samples.
Project description:A small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygous CF patients and non-CF controls. We used the custom designed Affymetrix HsAirwaya520108F Arrays to compare gene expression in 5 CF and 5 non CF nasal epithelial cell samples. We analysed a total of 10 samples (5 CF and 5 non CF). The CF group contained 2 males and 3 females, with an average age of 14 years and an average of 6% inflammatory cells per sample, and the non CF group contained 3 males and 2 females with an average age of 14.8 years and an average of 4.7% inflammatory cells.
Project description:The goal of this study was to compare cell composition and gene expression patterns for different cell types in large and small airways of CFTR+/+ (non-CF) and CFTR-/- (CF) pigs.
Project description:To provide a more detailed survey of adaptive changes in the physiology of P. aeruginosa (PA) during long-term infection of the cystic fibrosis (CF) lung, we performed a comparative proteome and transcriptome analysis of a set of isogenic sequential non-mutator and mutator isolates from three selected CF patients. Recently, we showed that during CF lung persistence PA mutators converge to a virulence-attenuated phenotype. In this study, we demonstrate that besides virulence-associated traits (VATs) the adaptation process of PA predominantly comprises metabolic pathways. In end-stage mutator strains, transcripts of genes encoding VATs, chemotaxis, degradation of aromatic compounds and several two-component regulatory systems were decreased. In contrast, several transcripts of genes or proteins involved in metabolism of fatty acids, nucleotides, amino acids and the generation of energy were increased. Of particular interest is the increased expression level of genes involved in (i) the anaerobic arginine-deiminase pathway, (ii) the anaerobic respiration such as nitrate-uptake protein OprF, redox-active azurin and cytchrome c551 peroxidase, (iii) the micro-aerobic respiration such as high oxygen-affinity cytochrome oxidase cbb3 (iv) the tricarboxylic acid cycle (TCA), glyoxylate shunt and anaplerotic carboxylation reactions to oxaloacetate. Strikingly, an increased transcription of the anaerobic regulator gene anr correlates with the up-regulation of ANR-dependent genes. In conclusion, these changes in transcriptome and proteome indicate an adaptive shift towards constitutive expression of genes of metabolic pathways obviously required for growth under micro-aerobic and nutritional conditions of suppurative CF lung tissue. Finally, these results provide us with new targets for antimicrobial agents and biomarkers reflecting adaptation of PA towards progressive CF lung disease. Experiment Overall Design: P. aeruginosa isolates recovered from different time points of chronic cystic fibrosis lung disease were cultered in vitro, harvested for RNA extraction and hybridization on Affymetrix microarrays. We compared the transcriptome (triplicate microarrays) of early non-mutator P. aeruginosa isolates with late mutator isolates with high mutation frequency probably the driving force of an efficient adaptation to changing environements to conclude from differences in gene expression to the requirements of CF lung environment. Experiment Overall Design: Second publication of array data to be added later
Project description:Cystic fibrosis (CF), a genetic disorder, is characterized by chronic lung disease. Small non-coding RNAs are key regulators of gene expression and participate in various processes, which are dysregulated in CF; however, they remain poorly studied. Here, we determined the complete microRNAs (miRNAs) expression pattern in three CF ex-vivo models. The miRNA profiles of air-liquid interface cultures of airway epithelia (bronchi, nasal cells, and nasal polyps) samples from patients with CF and non-CF controls were obtained by deep sequencing. Compared with non-CF controls, several miRNAs were deregulated in CF samples, for instance miR-181a-5p and the miR-449 family were upregulated. Moreover, mature miRNAs often showed variations (i.e., isomiRs) relative to their reference sequence, such as miR-101, suggesting that miRNAs consist of heterogeneous repertoires of multiple isoforms with different effects on gene expression. Analysis of miR-181a-5p and miR-101-3p roles indicated that they regulate the expression of WISP1, a key component of cell proliferation/migration programs. We showed that miR-101 and miR-181a-5p participated in aberrant recapitulation of wound healing programs by controlling WISP1 mRNA and protein level. Our miRNA expression data bring new insights into CF physiopathology and define new potential therapeutic targets in CF