Project description:In response to the issues of low denitrification efficiency and high N₂O emissions in the biological nitrogen removal process of low C/N municipal wastewater, studies typically address these challenges by adding carbon sources. In this study, the addition of microorganisms enhanced the carbon flow and electron transport for nitrate reduction, significantly improving the denitrification performance of low C/N wastewater and reducing N₂O production. Proteomic analysis was employed to explore the mechanisms underlying this effect. The results revealed that the metabolites produced by the added microorganisms, S. oneidensis MR-1 and B. subtilis, including biosurfactants, heme, and cytochromes, altered the intracellular carbon redistribution in P. denitrificans, leading to an increased carbon flow directed towards nitrate reduction, thus enhancing total nitrogen removal efficiency.
Project description:Marine microalgae (phytoplankton) mediate almost half of the worldwide photosynthetic carbon dioxide fixation and therefore play a pivotal role in global carbon cycling, most prominently during massive phytoplankton blooms. Phytoplankton biomass consists of considerable proportions of polysaccharides, substantial parts of which are rapidly remineralized by heterotrophic bacteria. We analyzed the diversity, activity and functional potential of such polysaccharide-degrading bacteria in different size fractions during a diverse spring phytoplankton bloom at Helgoland Roads (southern North Sea) at high temporal resolution using microscopic, physicochemical, biodiversity, metagenome and metaproteome analyses.
Project description:The available energy and carbon sources for prokaryotes in the deep ocean remain still largely enigmatic. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. Shipboard experiments performed in the North Atlantic using Labrador Sea Water (~2000 m depth) amended with thiosulfate led to an enhanced prokaryotic dissolved inorganic carbon (DIC) fixation.
2021-04-30 | GSE136729 | GEO
Project description:Isolation and purification of TCS degrading bacteria
Project description:The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds.
Project description:The identification and characterization of the transcriptional regulatory networks governing the physiological behaviour and adaptation of microbial cells is a key step in understanding their behaviour. One such wide-domain regulatory circuit, essential to all cells, is carbon catabolite repression (CCR): it allows the cell to prefer some carbon sources, whose assimilation is of high nutritional value, over less profitable ones. This system has been investigated in bacteria, yeast and filamentous fungi. In the latter, the C2H2 zinc finger protein has been shown to act as the central transcriptional repressor in this process. Here, we deciphered the CRE1 regulon by profiling transcription in a wild-type and delta-cre1 mutant strains on glucose in the model cellulose and hemicellulose-degrading fungus Trichoderma reesei (anamorph of Hypocrea jecorina) at constant growth rates known to per se repress and derepress CCR-affected genes.