Project description:We used wheat as rotational crop to assess the influence of continuous cropping on microbiome in Pinellia ternata rhizosphere and the remediation of rotational cropping to the impacted microbiota. Illumina high-throughput sequencing technology was utilized for this method to explore the rhizosphere microbial structure and diversity based on continuous and rotational cropping.
Project description:Rhizosphere is a complex system of interactions between plant roots, bacteria, fungi and animals, where the release of plant root exudates stimulates bacterial density and diversity. However, the majority of the bacteria in soil results to be unculturable but active. The aim of the present work was to characterize the microbial community associated to the root of V. vinifera cv. Pinot Noir not only under a taxonomic perspective, but also under a functional point of view, using a metaproteome approach. Our results underlined the difference between the metagenomic and metaproteomic approach and the large potentiality of proteomics in describing the environmental bacterial community and its activity. In fact, by this approach, that allows to investigate the mechanisms occurring in the rhizosphere, we showed that bacteria belonging to Streptomyces, Bacillus and Pseudomonas genera are the most active in protein expression. In the rhizosphere, the identified genera were involved mainly in phosphorus and nitrogen soil metabolism.
Project description:nervous system plays key roles in sea cucumber. We used single cell RNA sequencing (scRNA-seq) to analyze the diversity of diverse cells in the nervous system.