Project description:To identify potential CBX2-regulated genes in triple negative breast cancer cells we assessed global gene expression changes in CBX2-depleted MDA-MB-231 cells by RNA-sequencing analysis using the Illumina NovaSeq 6000 platform. Through Gene Set Enrichment Analysis we identified that CBX2 promotes cell growth, mTORC1 activation, E2F signalling and inhibits RBL2-mediated DREAM-complex activity.
Project description:The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified that followed pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|⧠1. Among these genes, 2439 genes are upregulated and 2002 genes are downregulated. DS exposure (2.30 ïM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference compared to untreated cells (p<0.05). Within these gene sets, DS is able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 genes were down-regulated. From PEA, 12 canonical pathways were significantly altered between these two cell lines (MCF-7 and MDA-MB-231). However, no alteration in any of these pathways was noticed in MCF-7 cell, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, to identify shared DEG, which are targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, we performed intersection analysis (Venn diagram). We found that only 7 DEG are overlapped of which six are reported in the database. This study highlights the diverse gene networks and pathways through which DS exhibits its effect on breast cancer cells. Two condition experiment. Human breast cancer Cell line MCF-7 groups: Vehicle control and dioscin treated; Human breast cancer cell line MDA-MB-231 cell group; vehicle control and dioscin-treated. Biological replicates: MCF-7 control compared to MCF-7 dioscin treated; MDA-MB-231 control compated to MDA-MB-231 dioscin-treated; MCF-7 control compared to MDA-MB-231 control; MCF-7 dioscin treated compared to MDA-MB-231 dioscin-treated. duplicate array
Project description:The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified that followed pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧ 1. Among these genes, 2439 genes are upregulated and 2002 genes are downregulated. DS exposure (2.30 M, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference compared to untreated cells (p<0.05). Within these gene sets, DS is able to upregulate 395 genes and downregulate 406 genes in MCF-7 and upregulate 36 and downregulate 60 genes in MDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 genes were down-regulated. From PEA, 12 canonical pathways were significantly altered between these two cell lines (MCF-7 and MDA-MB-231). However, no alteration in any of these pathways was noticed in MCF-7 cell, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, to identify shared DEG, which are targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, we performed intersection analysis (Venn diagram). We found that only 7 DEG are overlapped of which six are reported in the database. This study highlights the diverse gene networks and pathways through which DS exhibits its effect on breast cancer cells.
Project description:Dicer, RNase III endonuclease, is an essential enzyme in miRNA biogenesis that regulates target gene expression, and it has been reported that aberrant expressions of Dicer associate with the clinical outcomes of patients in various cancers. To explore the miRNA differencial expression regulated by Dicer in MDA-MB-231/E1A cells, the microarray profiling analysis was employed to conduct differentially expressed miRNAs in stable MDA-MB-231/vector, MDA-MB-231/E1A, and MDA-MB-231/E1A/shDicer cells.
Project description:To identify the miRNAs that are differentially expressed and secreted between the MDA-MB-231 metastatic breast cancer cells and the MCF-10A non-cancerous human mammary epithelial cells, we profiled the cellular and exosomal small RNAs (between 17 and 52 nt) isolated from these two cell lines by Solexa deep sequencing. MiRNAs that are significantly different between the two cell lines are identified. RNA was extracted from cultured MDA-MB-231 and MCF-10A cells or purified exosomes secreted by these cells, and subjected to library construction and Solexa deep sequencing.
Project description:Identification of genes that are involved in self-seeding by comparing gene expression profiles between parental MDA-MB-231 cells and seeder cells (MDA-231-S1a and S1b) 2 replicates from each sample (parental MDA-MB-231, MDA-MB-231 S1a and MDA-MB-231 S1b) were analyzed
Project description:Dicer, RNase III endonuclease, is an essential enzyme in miRNA biogenesis that regulates target gene expression, and it has been reported that aberrant expressions of Dicer associate with the clinical outcomes of patients in various cancers. To explore the miRNA differencial expression regulated by Dicer in MDA-MB-231/E1A cells, the microarray profiling analysis was employed to conduct differentially expressed miRNAs in stable MDA-MB-231/vector, MDA-MB-231/E1A, and MDA-MB-231/E1A/shDicer cells. The four groups including vector control, E1A-expressing and Dicer knockdown in E1A-expressing MDA-MB-231 cells were harvested and RNA were isolated. Two independent experiments were performed for each group.
Project description:MDA-MB-231 breast cancer cells and MCF-10A breast cells were exposed to 1 mT 50 Hz extremely low-frequency magnetic field (ELF-MF) for 4 hours
Project description:To investigate the effects of breast cancer derived EVs on liver metabolism, NSG mice had received 5 weeks of i.v. injections of MCF-10A EVs, MDA-MB-231 EVs or PBS. We then performed gene expression profiling analysis using data obtained from RNA-seq of liver from mice received 5 weeks of i.v. injections of MCF-10A EVs, MDA-MB-231 EVs or PBS.