Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
2020-05-08 | PXD016225 | Pride
Project description:South Florida Surface Water Microbiomes
Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
2023-10-25 | PXD045395 | Pride
Project description:Stable widely distribuited sponge microbiomes found across the Caribbean-South Atlantic Ocean
Project description:Transcriptional profiling of populations in the clam Ruditapes decussatus determined differentiation in gene-expression along parallel temperature gradients and between races of the Atlantic Ocean and West Mediterranean sea.
Project description:The diazotroph Trichodesmium is an important contributor to marine dinitrogen (N2) fixation, supplying so-called new N to phytoplankton in typically N-limited ocean regions. Identifying how iron (Fe) and phosphorus (P) influence Trichodesmium activity and biogeography is an ongoing area of study, where predicting patterns of resource stress is complicated in part by the uncertain bioavailability of organically complexed Fe and P. Here, a comparison of 26 metaproteomes from picked Trichodesmium colonies identified significantly different patterns between three ocean regions: the western tropical South Pacific, the western North Atlantic, and the North Pacific Subtropical Gyre. Trichodesmium metaproteomes across these regions significantly differed in KEGG submodule signals, and vector fitting showed that dissolved Fe, phosphate, and temperature significantly correlated with regional proteome patterns. Populations in the western tropical South Pacific appeared to modulate their proteomes in response to both Fe and P stress, including a comparatively low relative abundance of the N2 fixation marker protein, NifH. Significant increases in the relative abundance of both Fe and P stress marker proteins previously validated in culture studies suggested that Trichodesmium populations in the western North Atlantic and North Pacific were P-stressed and Fe-stressed, respectively. These patterns recapitulate established regional serial and co-limitation patterns of resource stress on phytoplankton communities. Evaluating community stress patterns may therefore predict resource controls on diazotroph biogeography. These data highlight how Trichodesmium modulates its metabolism in the field and provide an opportunity to more accurately constrain controls on Trichodesmium biogeography and N2 fixation.